zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Performance analysis of MAP/G/1 queue with working vacations and vacation interruption. (English) Zbl 1217.90078
Summary: We consider the MAP/G/1 queue with working vacations and vacation interruption. We obtain the queue length distribution with the method of supplementary variable, combined with the matrix-analytic method and censoring technique. We also obtain the system size distribution at pre-arrival epoch and the Laplace-Stieltjes transform (LST) of waiting time.
MSC:
90B22Queues and service (optimization)
60K25Queueing theory
References:
[1]Servi, L. D.; Finn, S. G.: M/M/1 queue with working vacation (M/M/1/WV), Perform. evaluation 50, 41-52 (2002)
[2]J.D. Kim, D.W. Choi, K.C. Chae. Analysis of queue-length distribution of the M/G/1 queue with working vacations, in: Hawaii International Conference on Statistics and Related Fields, June 2 – 8, 2003.
[3]Wu, D.; Takagi, H.: M/G/1 queue with multiple working vacations, Perform. evaluation 63, No. 7, 654-681 (2006)
[4]Baba, Y.: Analysis of a GI/M/1 queue with multiple working vacations, Oper. res. Lett. 33, 201-209 (2005) · Zbl 1099.90013 · doi:10.1016/j.orl.2004.05.006
[5]Banik, A. D.; Gupta, U. C.; Pathak, S. S.: On the GI/M/1/N queue with multiple vacation-analytic analysis and computation, Appl. math. Model. 31, 1701-1710 (2007) · Zbl 1167.90441 · doi:10.1016/j.apm.2006.05.010
[6]Li, J.; Tian, N.: The discrete-time GI/geo/1 queue with working vacations and vacation interruption, Appl. math. Comput. 185, No. 1, 1-10 (2007) · Zbl 1109.60076 · doi:10.1016/j.amc.2006.07.008
[7]Li, J.; Tian, N.; Ma, Z.: Performance analysis of GI/M/1 queue with working vacations and vacation interruption, Appl. math. Model. 32, 2715-2730 (2008) · Zbl 1167.90451 · doi:10.1016/j.apm.2007.09.017
[8]P.P. Bocharov, C. D’Apice, A.V. Pechinkin, S. Salerno, Queueing Theory, Utreche. Boston, 2004.
[9]Breuer, L.; Baum, D.: An introduction to queueing theory and matrix-analytic methods, (2005)
[10]Zhao, Y. Q.: Censoring technique in studying block-structured Markov chains, Advance in algorithmic methods for stochastic models, 417-433 (2000)
[11]Li, Q. L.; Zhao, Y. Q.: A constructive method for finding β-invariant measures for transition matrices of M/G/1 type, Matrix analytic methods theory and applications, 237-264 (2002) · Zbl 1029.60072
[12]Neuts, M. F.: Structured stochastic matrices of M/G/1 type and their application, (1989)