zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust reliable control for uncertain switched nonlinear systems with time delay under asynchronous switching. (English) Zbl 1217.93046
Summary: This paper investigates the problem of robust reliable control for a class of switched nonlinear systems with time delay and actuator failures under asynchronous switching. When the switching instants of the controller experience delays with respect to those of the system, a kind of reliable controller design method is proposed, and the dwell time approach is utilized for the stability analysis. Sufficient conditions for the existence of a reliable controller are formulated in terms of a set of LMIs. Then the proposed approach is extended to take into account switched delay systems with Lipschitz nonlinearities and structured uncertainties. Finally, a numerical example is given to illustrate the effectiveness of the proposed method.
93B35Sensitivity (robustness) of control systems
93C30Control systems governed by other functional relations
93C10Nonlinear control systems
93C41Control problems with incomplete information
[1]Varaiya, P.: Smart cars on smart roads: problems of control, IEEE transactions on automatic control 38, No. 2, 195-207 (1993)
[2]Wang, W.; Brockett, R. W.: Systems with finite communication bandwidth constraints – part I: State estimation problems, IEEE transactions on automatic control 42, No. 9, 1294-1299 (1997) · Zbl 0952.93125 · doi:10.1109/9.623096
[3]Tomlin, C.; Pappas, G. J.; Sastry, S.: Conflict resolution for air traffic management: a study in multiagent hybrid systems, IEEE transactions on automatic control 43, No. 4, 509-521 (1998) · Zbl 0904.90113 · doi:10.1109/9.664154
[4]Sun, Z.: A robust stabilizing law for switched linear systems, International journal of control 77, No. 4, 389-398 (2004) · Zbl 1059.93121 · doi:10.1080/00207170410001667468
[5]Cheng, D.; Guo, L.; Lin, Y.; Wang, Y.: Stabilization of switched linear systems, IEEE transactions on automatic control 50, No. 5, 661-666 (2005)
[6]Sun, Z.: Combined stabilizing strategies for switched linear systems, IEEE transactions on automatic control 51, No. 4, 666-674 (2006)
[7]Sun, Z.; Ge, S. S.: Analysis and synthesis of switched linear control systems, Automatica 41, No. 2, 181-195 (2005) · Zbl 1074.93025 · doi:10.1016/j.automatica.2004.09.015
[8]Lin, H.; Antsaklis, P. J.: Stability and stabilizability of switched linear systems: a survey of recent results, IEEE transactions on automatic control 54, No. 2, 308-322 (2009)
[9]S. Pettersson, Observer design for switched systems using multiple quadratic Lyapunov functions, in: Proceedings of the 2005 IEEE International Symposium on Intelligent Control 2005, pp. 262 – 267.
[10]Hespanha, J. P.; Liberzon, D.; Angeli, D.; Sontag, E. D.: Nonlinear norm-observability notions and stability of switched systems, IEEE transactions on automatic control 50, No. 2, 154-168 (2005)
[11]Hespanha, J. P.: Uniform stability of switched linear systems: extension of lasalle’s invariance principle, IEEE transactions on automatic control 49, No. 4, 470-482 (2004)
[12]De Persis, C.; De Santis, R.; Morse, A. S.: Switched nonlinear systems with state-dependent Dwell-time, Systems & control letters 50, No. 4, 291-302 (2003) · Zbl 1157.93510 · doi:10.1016/S0167-6911(03)00161-0
[13]Wang, R.; Zhao, J.: Guaranteed cost control for a class of uncertain switched delay systems: an average Dwell-time method, Cybernetics and systems 38, No. 1, 105-122 (2007) · Zbl 1111.93016 · doi:10.1080/01969720600998660
[14]X.M. Sun, G.M. Dimirovski, J. Zhao, W. Wang, S.S. Cyril, Exponential stability for switched delay systems based on average dwell time technique and Lyapunov function method, in: Proceedings of the 2006 American Control Conference, 2006, pp.1539-1543.
[15]Zhai, G.; Hu, B.; Yasuda, K.; Michel, A. N.: Stability analysis of switched systems with stable and unstable subsystems: an average Dwell time approach, International journal of systems science 32, No. 8, 1055-1061 (2001) · Zbl 1022.93043 · doi:10.1080/00207720010015690
[16]Zhang, L. X.; Wang, C. H.; Gao, H. J.: Delay-dependent stability and stabilization of a class of linear switched time-varying delay systems, Journal of systems engineering and electronics 18, No. 2, 320-326 (2007) · Zbl 1226.93106 · doi:10.1016/S1004-4132(07)60093-0
[17]Gao, F. Y.; Zhong, S. M.; Gao, X. Z.: Delay-dependent stability of a type of linear switching systems with discrete and distributed time delays, Applied mathematics and computation 196, No. 1, 24-39 (2008) · Zbl 1144.34050 · doi:10.1016/j.amc.2007.05.053
[18]Xiang, Z. R.; Wang, R. H.: Robust control for uncertain nonlinear switched systems with time delay under asynchronous switching, IET control theory and applications 3, No. 8, 1041-1050 (2009)
[19]Sun, X. M.; Zhao, J.; Hill, D. J.: Stability and L2-gain analysis for switched delay systems: A delay-dependent method, Automatica 42, No. 10, 1769-1774 (2006) · Zbl 1114.93086 · doi:10.1016/j.automatica.2006.05.007
[20]Zhang, Y.; Liu, X. Z.; Shen, X. M.: Stability of switched systems with time delay, Nonlinear analysis: hybrid systems 1, No. 1, 44-58 (2007) · Zbl 1126.94021 · doi:10.1016/j.nahs.2006.03.001
[21]Xiang, Z. R.; Wang, R. H.: Robust stabilization of switched non-linear systems with time-varying delays under asynchronous switching, Proceedings of imeche, part I: Journal of systems and control engineering 223, No. 8, 1111-1128 (2009)
[22]Sun, X. M.; Liu, G. P.; Rees, D.; Delay, W. Wang. Controller Failure Analysis For Systems With Time-Varying: IEEE transactions on automatic control, IEEE transactions on automatic control 53, No. 10, 2391-2396 (2008)
[23]Sun, X. M.; Liu, G. P.; Rees, D.; Wang, W.: Delay-dependent stability for discrete systems with large delay sequence based on switching techniques, Automatica 44, No. 11, 2902-2908 (2008) · Zbl 1152.93499 · doi:10.1016/j.automatica.2008.04.006
[24]Lien, C. H.; Yu, K. W.; Lin, Y. F.; Chung, Y. J.; Chung, L. Y.: Robust reliable H control for uncertain nonlinear systems via LMI approach, Applied mathematics and computation 198, No. 1, 453-462 (2008) · Zbl 1141.93322 · doi:10.1016/j.amc.2007.08.085
[25]Yao, B.; Wang, F. Z.: LMI approach to reliable H control of linear systems, Journal of systems engineering and electronics 17, No. 2, 381-386 (2006) · Zbl 1173.93332 · doi:10.1016/S1004-4132(06)60065-0
[26]Liu, Y. Q.; Wang, J. L.; Yang, G. H.: Reliable control of uncertain nonlinear systems, Automatica 34, No. 7, 875-879 (1998) · Zbl 0942.93007 · doi:10.1016/S0005-1098(98)00027-2
[27]Yu, L.: An LMI approach to reliable guaranteed cost control of discrete-time systems with actuator failure, Applied mathematics and computation 162, No. 3, 1325-1331 (2005) · Zbl 1125.93046 · doi:10.1016/j.amc.2004.03.012
[28]Wang, R.; Liu, M.; Zhao, J.: Reliable H control for a class of switched nonlinear systems with actuator failures, Nonlinear analysis: hybrid systems 1, No. 3, 317-325 (2007) · Zbl 1118.93351 · doi:10.1016/j.nahs.2006.11.002
[29]Wang, R.; Dimirovski, G. M.; Zhao, J.; Liu, G. P.: Output feedback control for uncertain linear systems with faulty actuators based on a switching method, International journal of robust and nonlinear control 19, No. 12, 1295-1312 (2008) · Zbl 1169.93393 · doi:10.1002/rnc.1379
[30]Wang, R.; Jin, G.; Zhao, J.: Roust fault-tolerant control for a class of switched nonlinear systems in lower triangular form, Asian journal of control 9, No. 1, 68-72 (2007)
[31]Xiang, Z.; Wang, R.: Robust L reliable control for uncertain nonlinear switched systems with time delay, Applied mathematics and computation 210, No. 1, 202-210 (2009) · Zbl 1159.93322 · doi:10.1016/j.amc.2008.12.074
[32]Cao, Y.; Sun, Y.; Cheng, C.: Delay dependent robust stabilization of uncertain systems with multiple state delays, IEEE transactions on automatic control 43, No. 11, 1608-1612 (1998) · Zbl 0973.93043 · doi:10.1109/9.728880
[33]Xie, L.: Output feedback H control of systems with parameter uncertainty, International journal of control 63, No. 4, 741-750 (1996) · Zbl 0841.93014 · doi:10.1080/00207179608921866
[34]Petersen, I. R.: A stabilization algorithm for a class of uncertain linear systems, Systems and control letters 8, 351-357 (1987) · Zbl 0618.93056 · doi:10.1016/0167-6911(87)90102-2