zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Impulsive consensus for complex dynamical networks with nonidentical nodes and coupling time-delays. (English) Zbl 1217.93078
Summary: This paper investigates the problem of global consensus between a Complex Dynamical Network (CDN) and a known goal signal by designing an impulsive consensus control scheme. The dynamical network is complex with respect to the uncertainties, nonidentical nodes, and coupling time-delays. The goal signal can be a measurable vector function or a solution of a dynamical system. By utilizing the Lyapunov function and the Lyapunov-Krasovskii functional methods, robust global exponential stability criteria are derived for the error system, under which global exponential impulsive consensus is achieved for the CDN. These criteria are expressed in terms of Linear Matrix Inequalities (LMIs) and algebraic inequalities. Thus, the impulsive controller can be easily designed by solving the derived inequalities. Meanwhile, estimates of the consensus rate for global exponential consensus are also obtained. Two examples with numerical simulations are worked out for illustration.
MSC:
93C30Control systems governed by other functional relations
34K34Hybrid systems of functional-differential equations
34K45Functional-differential equations with impulses
93D15Stabilization of systems by feedback
93C65Discrete event systems
93C95Applications of control theory