zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A novel scheme for the design of backstepping control for a class of nonlinear systems. (English) Zbl 1217.93082
Summary: A novel scheme is proposed for the design of backstepping control for a class of state-feedback nonlinear systems. In the design, the unknown nonlinear functions are approximated by the neural networks (NNs) identification models. The Lyapunov function of every subsystem consists of the tracking error and the estimation errors of NN weight parameters. The adaptive gains are dynamically determined in a structural way instead of keeping them constants, which can guarantee system stability and parameter estimation convergence. When the modeling errors are available, the indirect backstepping control is proposed, which can guarantee the functional approximation error will converge to a rather small neighborhood of the minimax functional approximation error. When the modeling errors are not available, the direct backstepping control is proposed, where only the tracking error is necessary. The simulation results show the effectiveness of the proposed schemes.
MSC:
93C40Adaptive control systems
93B52Feedback control
References:
[1]Seto, D.; Annaswamy, M.; Baillieul, J.: Adaptive control of nonlinear systems with a triangular structure, IEEE trans. Autom. control 39, 1411-1427 (1994) · Zbl 0806.93034 · doi:10.1109/9.299624
[2]Krstic, M.; Kanellakopoulos, I.; Kokotovic, P. V.: Nonlinear and adaptive control design, (1995)
[3]Peng, P. -Y.; Jiang, Z. -P.: Stable neural controller design for unknown nonlinear systems using backstepping, IEEE trans. Neural netw. 11, 1347-1360 (2000)
[4]Chen, Bing; Liu, Xiaoping; Liu, Kefu; Lin, Chong: Direct adaptive fuzzy control of nonlinear strict-feedback systems, Automatica 45, 1530-1535 (2009) · Zbl 1166.93341 · doi:10.1016/j.automatica.2009.02.025
[5]Wang, Min; Chen, Bing; Shi, Peng: Adaptive neural control for a class of perturbed strict-feedback nonlinear time-delay systems, IEEE trans. Syst. man cybern. – part B: cybern. 38, No. 3, 721-730 (2008)
[6]Fabri, S.; Kadirkamanathan, V.: Dynamic structure neural networks for stable adaptive control of nonlinear systems, IEEE trans. Neural netw. 7, 1151-1167 (1996)
[7]Funahashi, K. -I.: On the approximate realization of continuous mappings by neural networks, Neural netw. 2, 183-192 (1989)
[8]Rovithakis, G. A.; Christodoulou, M. A.: Adaptive control of unknown plants using dynamical neural networks, IEEE trans. Syst. man cybern. 24, 400-412 (1994)
[9]Chen, T.; Chen, H.: Approximation capability to functions of several variables, nonlinear functionals, and operators by radial basis function neural networks, IEEE trans. Neural netw. 6, 904-910 (1995)
[10]Schilling, R. J.; Carroll, J. J.; Al-Ajlouni, A. F.: Approximation of nonlinear systems with radial basis function neural networks, IEEE trans. Neural netw. 12, 1-15 (2001)
[11]Kwan, C.; Lewis, F. L.: Robust backstepping control of nonlinear systems using neural networks, IEEE trans. Syst. man cybern. – part A: syst. Humans 30, 753-766 (2000)
[12]L. Ma, K. Schilling, C. Schmid, Adaptive backstepping sliding mode control with gaussian networks for a class of nonlinear systems with mismatched uncertainties, in: Proceedings of the 44th IEEE Conference Decision and Control, and the European Control Conference, December, 2005, pp. 5504 – 5509.
[13]Mazenc, F.; Bliman, P. -A.: Backstepping design for time-delay nonlinear systems, IEEE trans. Autom. control 51, 149-154 (2006)
[14]Gong, J. Q.; Yao, B.: Neural networks adaptive robust control of nonlinear systems in semi-strict feedback form, Automatica 37, No. March, 1149-1160 (2001) · Zbl 0996.93055 · doi:10.1016/S0005-1098(01)00069-3
[15]Zhang, T.; Ge, S. S.; Hang, C. C.: Adaptive neural network control for strict-feedback nonlinear systems using backstepping design, Automatica 36, No. May, 1835-1846 (2000) · Zbl 0976.93046
[16]Li, Y.; Qiang, S.; Zhuang, X.: Robust and adaptive backstepping control for nonlinear systems using RBF neural networks, IEEE trans. Neural netw. 15, No. May, 693-701 (2004)
[17]Hsu, C. -F.; Lin, C. -M.; Lee, T. -T.: Wavelet adaptive backstepping control for a class of nonlinear systems, IEEE trans. Neural netw. 17, No. September, 1175-1183 (2006)
[18]Slotine, J. -J.E.; Li, W.: Applied nonlinear control, (1991) · Zbl 0753.93036
[19]Hojati, M.; Gazor, S.: Hybrid adaptive fuzzy identification and control of nonlinear systems, IEEE trans. Fuzzy syst. 10, 198-210 (2002)