zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stabilization and tracking control for a class of nonlinear systems. (English) Zbl 1217.93145
Summary: This paper discusses stabilization and tracking control problems using linear matrix inequalities for a class of systems with Lipschitz nonlinearities. A nonlinear state feedback stabilization control is proposed for systems containing a more general case of Lipschitz nonlinearity. The main objective of the present study is to provide, for multi-input multi-output nonlinear systems, a tracking control approach based on nonlinear state feedback, which guarantees global asymptotic output and state tracking with zero tracking error in the steady state. Further, the tracking control is formulated for optimal disturbance rejection, using a L 2 gain reduction based performance criteria. The proposed methodologies are illustrated herein using two simulation examples of chaotic and unstable dynamical systems.
MSC:
93D15Stabilization of systems by feedback
93C10Nonlinear control systems
93B52Feedback control
References:
[1]Hong, K. -S.; Wu, J. W.; Lee, K. I.: New conditions for the exponential stability of evolution equations, IEEE trans. Automat. control 39, 1432-1436 (1994) · Zbl 0825.93678 · doi:10.1109/9.299627
[2]Hong, K. -S.: Asymptotic behavior analysis of a coupled time-varying system: application to adaptive systems, IEEE trans. Automat. control 42, 1693-1697 (1997) · Zbl 0900.93322 · doi:10.1109/9.650018
[3]Luo, W.; Chu, Y. -C.; Ling, K. -V.: Inverse optimal adaptive control for attitude tracking of spacecraft, IEEE trans. Automat. control 50, 1639-1654 (2005)
[4]Cervantes, I.; Alvarez-Ramirez, J.: On the PID tracking control of robot manipulators, Systems control lett. 42, 37-46 (2001) · Zbl 0974.93039 · doi:10.1016/S0167-6911(00)00077-3
[5]Kim, C. -S.; Hong, K. -S.; Kim, M. -K.: Nonlinear robust control of a hydraulic elevator: experiment-based modeling and two-stage Lyapunov redesign, Control eng. Pract. 13, 789-803 (2005)
[6]Wei, D. Q.; Luo, X. S.; Zhang, B.; Qin, Y. H.: Controlling chaos in space-clamped Fitzhugh–Nagumo neuron by adaptive passive method, Nonlinear anal. RWA 11, 1752-1759 (2010) · Zbl 1188.93045 · doi:10.1016/j.nonrwa.2009.03.029
[7]Skogestad, S.; Postlethwaite, I.: Multivariable feedback control analysis and design, (2005)
[8]Aguiar, A. P.; Hespanha, J. P.; Kokotovic, P. V.: Performance limitations in reference tracking and path following for nonlinear systems, Automatica 44, 598-610 (2008)
[9]Lu, G.; Ho, D. W. C.: Full-order and reduced-order observers for Lipschitz descriptor systems: the unified LMI approach, IEEE trans. Circuits syst. II 53, 563-567 (2006)
[10]Rajamani, R.: Observers for Lipschitz nonlinear systems, IEEE trans. Automat. control 43, 397-401 (1998) · Zbl 0905.93009 · doi:10.1109/9.661604
[11]Sun, J.; Liu, G. P.: State feedback and output feedback control of a class of nonlinear systems with delayed measurements, Nonlinear anal. TMA 67, 1623-1636 (2007) · Zbl 1123.34064 · doi:10.1016/j.na.2006.08.007
[12]Xiang, Z.; Wang, R.: Robust L reliable control for uncertain nonlinear switched systems with time delay, Appl. math. Comput. 210, 202-210 (2009) · Zbl 1159.93322 · doi:10.1016/j.amc.2008.12.074
[13]Wang, H.; Xue, A.; Lu, R.: Absolute stability criteria for a class of nonlinear singular systems with time delay, Nonlinear anal. TMA 70, 621-630 (2009) · Zbl 1168.34048 · doi:10.1016/j.na.2007.12.030
[14]Zhang, B.; Lam, J.; Xu, S.; Shu, Z.: Absolute exponential stability criteria for a class of nonlinear time-delay systems, Nonlinear anal. RWA 11, 1963-1976 (2010) · Zbl 1188.93097 · doi:10.1016/j.nonrwa.2009.04.018
[15]Lien, C. -H.; Yu, K. -W.; Lin, Y. -F.; Chung, Y. -J.; Chung, L. -Y.: Robust reliable H control for uncertain nonlinear systems via LMI approach, Appl. math. Comput. 198, 453-462 (2008) · Zbl 1141.93322 · doi:10.1016/j.amc.2007.08.085
[16]Zhang, D.; Yu, L.: H output tracking control for neutral systems with time-varying delay and nonlinear perturbations, Commun. nonlinear sci. Numer. simul. 15, 3284-3292 (2010) · Zbl 1222.93110 · doi:10.1016/j.cnsns.2009.12.032
[17]Lian, K. -Y.; Liou, J. -J.: Output tracking control for fuzzy systems via output feedback design, IEEE trans. Fuzzy syst. 14, 628-639 (2006)
[18]Sokolov, V. F.: Adaptive suboptimal tracking for a first-order object under Lipschitz uncertainty, Automat. remote control 64, 457-467 (2003) · Zbl 1082.93039 · doi:10.1023/A:1023269709937
[19]Sokolov, V. F.: Adaptive suboptimal tracking for the first-order plant with Lipschitz uncertainty, IEEE trans. Automat. control 48, 607-612 (2003)
[20]Liuzzo, S.; Marino, R.; Tomei, P.: Adaptive learning control of nonlinear systems by output error feedback, IEEE trans. Automat. control 52, 1232-1248 (2007)
[21]Khalil, H. K.: Nonlinear systems, (1996)
[22]Rehan, M.; Ahmed, A.; Iqbal, N.: Static and low order anti-windup synthesis for cascade control systems with actuator saturation: an application to temperature-based process control, ISA trans. 49, 293-301 (2010)
[23]Rehan, M.; Ahmed, A.; Iqbal, N.: Design and implementation of full order anti-windup with actuator amplitude rate-limiter for an AC motor speed control system, J. chin. Inst. eng. 33, 397-404 (2010)
[24]Boyd, S. P.; Ghaoui, L. E.; Feron, E.; Balakrishnan, V.: Linear matrix inequalities in system and control theory, (1994)
[25]Ge, S. S.; Tee, K. P.: Approximation-based control of nonlinear MIMO time-delay systems, Automatica 43, 31-43 (2007) · Zbl 1137.93042 · doi:10.1016/j.automatica.2006.08.003
[26]Li, Z.; Tao, P. Y.; Ge, S. S.; Adams, M.; Wijesoma, W. S.: Robust adaptive control of cooperating mobile manipulators with relative motion, IEEE trans. Syst. man cybern. B 38, 103-116 (2008)
[27]Han, T. T.; Ge, S. S.; Lee, T. H.: Persistent Dwell-time switched nonlinear systems: variation paradigm and gauge design, IEEE trans. Automat. control 55, 321-337 (2010)
[28]Ahmed, A.; Rehan, M.; Iqbal, N.: Robust full order anti-windup compensator design for a class of cascade control systems using lmis, Electr. eng. 92, 129-140 (2010)
[29]Ge, S. S.; Wang, C.: Adaptive control of uncertain Chua’s circuits, IEEE trans. Circuits syst. I 47, 1397-1402 (2000) · Zbl 1046.93506 · doi:10.1109/81.883337
[30]Wang, C.; Ge, S. S.: Adaptive synchronization of uncertain chaotic systems via backstepping design, Chaos solitons fractals 12, 1199-1206 (2001) · Zbl 1015.37052 · doi:10.1016/S0960-0779(00)00089-8