zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stochastic dynamics of nonautonomous Cohen-Grossberg neural networks. (English) Zbl 1217.93175
Summary: This paper is devoted to the study of the stochastic stability of a class of Cohen-Grossberg neural networks, in which the interconnections and delays are time-varying. With the help of Lyapunov function, Burkholder-Davids-Gundy inequality, and Borel-Cantell’s theory, a set of novel sufficient conditions on pth moment exponential stability and almost sure exponential stability for the trivial solution of the system is derived. Compared with previous published results, our method does not resort to the Razumikhin-type theorem and the semimartingale convergence theorem. Results of the development as presented in this paper are more general than those reported in some previously published papers. An illustrative example is also given to show the effectiveness of the obtained results.
93E15Stochastic stability
92B20General theory of neural networks (mathematical biology)
60H10Stochastic ordinary differential equations