zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Mittag-Leffler functions and their applications. (English) Zbl 1218.33021
Summary: Motivated essentially by the success of the applications of the Mittag-Leffler functions in many areas of science and engineering, the authors present, in a unified manner, a detailed account or rather a brief survey of the Mittag-Leffler function, generalized Mittag-Leffler functions, Mittag-Leffler type functions, and their interesting and useful properties. Applications of G. M. Mittag-Leffler functions in certain areas of physical and applied sciences are also demonstrated. During the last two decades this function has come into prominence after about nine decades of its discovery by a Swedish Mathematician Mittag-Leffler, due to the vast potential of its applications in solving the problems of physical, biological, engineering, and earth sciences, and so forth. In this survey paper, nearly all types of Mittag-Leffler type functions existing in the literature are presented. An attempt is made to present nearly an exhaustive list of references concerning the Mittag-Leffler functions to make the reader familiar with the present trend of research in Mittag-Leffler type functions and their applications.
33E12Mittag-Leffler functions and generalizations