zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability of impulsive stochastic differential delay systems and its application to impulsive stochastic neural networks. (English) Zbl 1218.34097
Summary: This paper is concerned with the stability of n-dimensional stochastic differential delay systems with nonlinear impulsive effects. First, an equivalence relation between the solution of the n-dimensional stochastic differential delay system with nonlinear impulsive effects and that of a corresponding n-dimensional stochastic differential delay system without impulsive effects is established. Then, some stability criteria for n-dimensional stochastic differential delay systems with nonlinear impulsive effects are obtained. Finally, the stability criteria are applied to uncertain impulsive stochastic neural networks with time-varying delay. The results show that this convenient and efficient method will provide a new approach to the study of the stability of impulsive stochastic neural networks. Some examples are also discussed to illustrate the effectiveness of our theoretical results.
MSC:
34K50Stochastic functional-differential equations
34K20Stability theory of functional-differential equations
92B20General theory of neural networks (mathematical biology)
34K45Functional-differential equations with impulses
References:
[1]Yan, J. R.; Zhao, A. M.: Oscillation and stability of linear impulsive delay differential equations, J. math. Anal. appl. 227, 187-194 (1998) · Zbl 0917.34060 · doi:10.1006/jmaa.1998.6093
[2]Li, W. T.; Huo, H. F.: Existence and global attractivity of positive periodic solutions of functional differential equations with impulses, Nonlinear anal. 59, 857-877 (2004) · Zbl 1061.34059 · doi:10.1016/j.na.2004.07.042
[3]Yan, J. R.: Stability for impulsive delay differential equations, Nonlinear anal. 63, 66-80 (2005) · Zbl 1082.34069 · doi:10.1016/j.na.2005.05.001
[4]Alzabut, J. O.; Abdeljawad, T.: On existence of a globally attractive periodic solution of impulsive delay logarithmic population model, Appl. math. Comput. 198, 463-469 (2008) · Zbl 1163.92033 · doi:10.1016/j.amc.2007.08.024
[5]Liu, Y. J.; Ge, W. G.: Stability theorems and existence results for periodic solutions of nonlinear impulsive delay differential equations with variable coefficients, Nonlinear anal. 57, 363-399 (2004) · Zbl 1064.34051 · doi:10.1016/j.na.2004.02.020
[6]Mao, X. R.; Selfridge, C.: Stability of stochastic interval systems with time delays, Syst. control lett. 42, 279-290 (2001) · Zbl 0974.93047 · doi:10.1016/S0167-6911(00)00103-1
[7]Mao, X.: Stability and stabilisation of stochastic differential delay equations, IET control theory appl. 1, 1551-1566 (2007)
[8]Zhao, S. W.; Sun, J. T.; Wu, H. J.: Stability of linear stochastic differential delay systems under impulsive control, IET control theory appl. 3, 1547-1552 (2009)
[9]Li, C. X.; Sun, J. T.: Stability analysis of nonlinear stochastic differential delay systems under impulsive control, Phys. lett. A 374, 1154-1158 (2010)
[10]Li, C. X.; Sun, J. T.; Sun, R. Y.: Stability analysis of a class of stochastic differential delay equations with nonlinear impulsive effects, J. franklin inst. 347, 1186-1198 (2010) · Zbl 1207.34104 · doi:10.1016/j.jfranklin.2010.04.017
[11]Zhao, G. H.; Song, M. H.; Liu, M. Z.: Exponential stability of Euler–Maruyama solutions for impulsive stochastic differential equations with delay, Appl. math. Comput. 215, 3425-3432 (2010) · Zbl 1229.65031 · doi:10.1016/j.amc.2009.10.037
[12]Li, X. M.; Huang, L. H.; Zhu, H. Y.: Global stability of cellular neural networks with constant and variable delays, Nonlinear anal. 53, 319-333 (2003) · Zbl 1011.92006 · doi:10.1016/S0362-546X(02)00176-1
[13]Hou, Y. Y.; Liao, T. L.; Yan, J. J.: Global asymptotic stability for a class of nonlinear neural networks with multiple delays, Nonlinear anal. 67, 3037-3040 (2007) · Zbl 1128.34324 · doi:10.1016/j.na.2006.09.049
[14]Akca, H.; Alassar, R.; Covachev, V.; Covacheva, Z.; Al-Zahrani, E.: Continuous-time additive Hopfield-type neural networks with impulses, J. math. Anal. appl. 290, 436-451 (2004) · Zbl 1057.68083 · doi:10.1016/j.jmaa.2003.10.005
[15]Li, Y.: Global exponential stability of BAM neural networks with delays and impulses, Chaos solitons fractals 24, 279-285 (2005) · Zbl 1099.68085 · doi:10.1016/j.chaos.2004.09.027
[16]Xia, Y.; Cao, J.; Cheng, S.: Global exponential stability of delayed cellular neural networks with impulses, Neurocomputing 70, 2495-2501 (2007)
[17]Xiong, W.; Zhou, Q.; Xiao, B.; Yu, Y.: Global exponential stability of cellular neural networks with mixed delays and impulses, Chaos solitons fractals 34, 896-902 (2007) · Zbl 1137.34358 · doi:10.1016/j.chaos.2006.03.091
[18]Song, Q. K.; Wang, Z. D.: Stability analysis of impulsive stochastic Cohen–Grossberg neural networks with mixed time delays, Physica A 387, 3314-3326 (2008)
[19]Huang, Z.; Yang, Q.; Luo, X.: Exponential stability of impulsive neural networks with time-varying delays, Chaos solitons fractals 35, 770-780 (2008) · Zbl 1139.93353 · doi:10.1016/j.chaos.2006.05.089
[20]Zhang, Y.; Sun, J. T.: Stability of impulsive neural networks with time delays, Phys. lett. A 348, 44-50 (2005) · Zbl 1195.93122 · doi:10.1016/j.physleta.2005.08.030
[21]Ahmad, Shair; Stamova, Ivanka M.: Global exponential stability for impulsive cellular neural networks with time-varying delays, Nonlinear anal. 69, 786-795 (2008) · Zbl 1151.34061 · doi:10.1016/j.na.2008.02.067
[22]Li, X. L.; Cao, J. D.: Exponential stability of stochastic Cohen–Grossberg neural networks with time-varying delays, Lecture notes in comput. Sci., 162-167 (2005) · Zbl 1082.68654 · doi:10.1007/b136476
[23]Wang, Z. D.; Shu, H. S.; Fang, J. A.; Liu, X. H.: Robust stability for stochastic Hopfield neural networks with time delays, Nonlinear anal. RWA 7, 1119-1128 (2006) · Zbl 1122.34065 · doi:10.1016/j.nonrwa.2005.10.004
[24]Huang, H.; Feng, G.: Delay-dependent stability for uncertain stochastic neural networks with time-varying delay, Physica A 381, 93-103 (2007)
[25]Zhu, E. W.; Zhang, H. M.; Wang, Y.; Zou, J. Z.; Yu, Z.; Hou, Z. T.: Pth moment exponential stability of stochastic Cohen–Grossberg neural networks with time-varying delays, Neural process. Lett. 26, 191-200 (2007)
[26]Zhang, J. H.; Shi, P.; Qiu, J. Q.: Novel robust stability criteria for uncertain stochastic Hopfield neural networks with time-varying delays, Nonlinear anal. RWA 8, 1349-1357 (2007) · Zbl 1124.34056 · doi:10.1016/j.nonrwa.2006.06.010
[27]Rakkiyappan, R.; Balasubramaniam, P.: Delay-dependent asymptotic stability for stochastic delayed recurrent neural networks with time varying delays, Appl. math. Comput. 198, 526-533 (2008) · Zbl 1144.34375 · doi:10.1016/j.amc.2007.08.053
[28]Chen, W. H.; Lu, X. M.: Mean square exponential stability of uncertain stochastic delayed neural networks, Phys. lett. A 372, 1061-1069 (2008) · Zbl 1217.92005 · doi:10.1016/j.physleta.2007.09.009
[29]Wu, Y. Y.; Wu, Y. Q.; Chen, Y. G.: Mean square exponential stability of uncertain stochastic neural networks with time-varying delay, Neurocomputing 72, 2379-2384 (2009)
[30]Yu, J. J.; Zhang, K. J.; Fei, S. M.: Further results on mean square exponential stability of uncertain stochastic delayed neural networks, Commun. nonlinear sci. Numer. simul. 14, 1582-1589 (2009) · Zbl 1221.93267 · doi:10.1016/j.cnsns.2008.04.009
[31]Kwon, O. M.; Lee, S. M.; Park, Ju H.: Improved delay-dependent exponential stability for uncertain stochastic neural networks with time-varying delays, Phys. lett. A 374, 1232-1241 (2010)
[32]Liang, J. L.; Wang, Z. D.; Liu, X. H.: State estimation for coupled uncertain stochastic networks with missing measurements and time-varying delays: the discrete-time case, IEEE trans. Neural netw. 5, 781-793 (2009)
[33]Liu, Y. R.; Wang, Z. D.; Liang, J. L.: Stability and synchronization of discrete-time Markovian jumping neural networks with mixed mode-dependent time-delays, IEEE trans. Neural netw. 7, 1102-1116 (2009)
[34]Wang, Z. D.; Wang, Y.; Liu, Y. R.: Global synchronization for discrete-time stochastic complex networks with randomly occurred nonlinearities and mixed time-delays, IEEE trans. Neural netw. 1, 11-25 (2010)
[35]Li, K. L.: Stability analysis for impulsive Cohen–Grossberg neural networks with time-varying delays and distributed delays, Nonlinear anal. RWA 10, 2784-2798 (2009) · Zbl 1162.92002 · doi:10.1016/j.nonrwa.2008.08.005
[36]Xu, L. G.; Xu, D. Y.: Exponential p-stability of impulsive stochastic neural networks with mixed delays, Chaos solitons fractals 41, 263-272 (2009) · Zbl 1198.34168 · doi:10.1016/j.chaos.2007.11.031
[37]Wang, X. H.; Guo, Q. Y.; Xu, D. Y.: Exponential p-stability of impulsive stochastic choen–Grossberg neural networks with mixed delays, Math. comput. Simulation 79, 1698-1710 (2009) · Zbl 1165.34043 · doi:10.1016/j.matcom.2008.08.008