zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive fourth-order partial differential equation filter for image denoising. (English) Zbl 1218.35006
Summary: To overcome the staircasing effects and simultaneously avoid edge blurring, this paper describes a fourth-order partial differential equation based edge-preserving regularization filter for noise removal. This technique is closely related to the nonlinear anisotropic diffusion. Compared results distinctly demonstrate the superiority of our proposed scheme over the LLT model, in terms of removing noise while sharply maintaining the edge features.
MSC:
35A15Variational methods (PDE)
94A08Image processing (compression, reconstruction, etc.)
References:
[1]Rudin, L.; Osher, S.; Fatemi, E.: Nonlinear total variation based noise removal algorithms, Physica D 60, 259-268 (1992) · Zbl 0780.49028 · doi:10.1016/0167-2789(92)90242-F
[2]D.M. Strong, T.F. Chan, Spatially and Scale Adaptive Total Variation Based Regularization and Anisotropic Diffusion in Image Processing, UCLA CAM Report 96-46, November, 1996.
[3]D.M. Strong, Adaptive Total Variation Minimizing Image Restoration, Ph.D. Thesis, UCLA CAM Report 97-38, August, 1997.
[4]Chen, Y. M.; Wunderli, T.: Adaptive total variation for image restoration in BV space, J. math. Anal. appl. 272, 117-137 (2002) · Zbl 1020.68104 · doi:10.1016/S0022-247X(02)00141-5
[5]Greer, J. B.; Bertozzi, A. L.: Traveling wave solutions of fourth order pdes for image processing, SIAM J. Math. anal. 36, 38-68 (2004) · Zbl 1082.35080 · doi:10.1137/S0036141003427373
[6]You, Y. -L.; Kaveh, M.: Fourth-order partial differential equations for noise removal, IEEE trans. Image process. 9, 1723-1730 (2000) · Zbl 0962.94011 · doi:10.1109/83.869184
[7]Hajiaboli, M. R.: A self-governing hybrid model for noise removal, Lect. notes comput. Sci. 5414, 295-305 (2009)
[8]Hajiaboli, M. R.: An anisotropic fourth-order partial differential equation for noise removal, Lect. notes comput. Sci. 5567, 356-367 (2009)
[9]Hajiaboli, M. R.: An anisotropic fourth-order diffusion filter for image noise removal, Int. J. Comput. vis. (2010)
[10]Hajiaboli, M. R.: A self-governing fourth-order nonlinear diffusion filter for image noise removal, IPSJ trans. Comput. vision appl. 2, 94-103 (2010)
[11]Chan, T.; Marquina, A.; Mulet, P.: High-order total variation-based image restoration, SIAM J. Sci. comput. 22, 503-516 (2000) · Zbl 0968.68175 · doi:10.1137/S1064827598344169
[12]Lysaker, M.; Lundervold, A.; Tai, X. -C.: Noise removal using fourth order partial differential equation with applications to medical magnetic resonance images in space and time, IEEE trans. Image process. 12, 1579-1590 (2003)
[13]Steidl, G.; Mannheim: A note on the dual treatment of higher-order regularization functionals, Computing 76, 135-148 (2006) · Zbl 1087.65067 · doi:10.1007/s00607-005-0129-z
[14]Chen, H. Z.; Song, J. P.; Tai, X. -C.: A dual algorithm for minimization of the LLT model, Adv. comput. Math. 31, 115-130 (2009) · Zbl 1170.94006 · doi:10.1007/s10444-008-9097-0
[15]Kim, S.; Lim, H.: Fourth-order partial differential equations for effective image denoising, Electron. J. Differ. equ. Conf. 17, 107-121 (2009) · Zbl 1173.35536 · doi:emis:journals/EJDE/conf-proc/17/k2/abstr.html
[16]Lysaker, M.; Tai, X. -C.: Iterative image restoration combining total variation minimization and a second-order functional, Int. J. Comput. vision 66, 5-18 (2006)
[17]Li, F.; Shen, C.; Fan, J.; Shen, C.: Image restoration combining a total variational filter and a fourth-order filter, J. vis. Commun. image R. 18, 322-330 (2007)
[18]Liu, Q.; Yao, Z.; Ke, Y.: Entropy solutions for a fourth-order nonlinear degenerate problem for noise removal, Nonlinear anal. 67, 1908-1918 (2007) · Zbl 1119.35031 · doi:10.1016/j.na.2006.08.016
[19]Bertsekas, D. P.; Nedić, A.; Ozdaglar, A. E.: Convex analysis and optimization, (2006)