zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Vortex structures with complex points singularities in two-dimensional Euler equations. New exact solutions. (English) Zbl 1218.35168
Summary: In this work we present a new class of exact stationary solutions for two-dimensional (2D) Euler equations. Unlike already known solutions, the new ones contain complex singularities. We consider point singularities which have a vector field index greater than 1 as complex. For example, the dipole singularity is complex because its index is equal to 2. We present in explicit form a large class of exact localized stationary solutions for 2D Euler equations with a singularity whose index is equal to 3. The solutions obtained are expressed in terms of elementary functions. These solutions represent a complex singularity point surrounded by a vortex satellite structure. We also discuss the motion equation of singularities and conditions for singularity point stationarity which provide the stationarity of the complex vortex configuration.
MSC:
35Q31Euler equations
35Q35PDEs in connection with fluid mechanics
35A20Analytic methods, singularities (PDE)
References:
[1]Lamb, H.: Hydrodynamics, (1932) · Zbl 58.1298.04
[2]Saffman, P. G.: Vortex dynamics, (1992) · Zbl 0777.76004
[3]Newton, P. K.: The N-vortex problem: analytical techniques, (2001)
[4]Stuart, J. T.: J. fluid mech., J. fluid mech. 29, 417 (1967)
[5]Mitchell, T. B.; Rossi, L. F.: Phys. fluids, Phys. fluids 20, 054103 (2008)
[6]Kramer, W.; Clercx, H. J. H.; Van Heijst, G. J. F.: Phys. fluids, Phys. fluids 19, 126603 (2007)
[7]Legras, B.; Dritschel, D. G.: Phys. fluids A, Phys. fluids A 3, 845 (1991)
[8]Melander, M. V.; Styczek, A. S.; Zabusky, N. J.: Phys. rev. Lett., Phys. rev. Lett. 53, 1222 (1984)
[9]Zabusky, N. J.: Physica D, Physica D 18, No. 1–3, 15 (1986)
[10]Dritschel, G.; Legras, B.: Phys. today, Phys. today 46, No. 3, 44 (1993)
[11]Schecter, D. A.; Fine, K. S.; Dubin, D. H. E.; Driscoll, C. F.: Phys. fluids, Phys. fluids 11, 905 (1999)
[12]Aref, H.; Newton, P. K.; Stremler, M. A.; Tokieda, T.; Vainchtein, D. I.: Adv. appl. Mech., Adv. appl. Mech. 39, 1 (2003)
[13]Dezhe, Z. J.; Dubin, D. H. E.: Phys. fluids, Phys. fluids 13, No. 3, 677 (2001)
[14]Dritschel, D. G.: J. fluid mech., J. fluid mech. 172, 157 (1986)
[15]Williams, J. C. Mc: J. fluid mech., J. fluid mech. 146, 21 (1984)
[16]Couder, I.; Basdevadt, C.: J. fluid mech., J. fluid mech. 173, 225 (1986)
[17]Sommeria, J.; Meyers, S. P.; Swinney, H. L.: Nature (London), Nature (London) 331, 689 (1988)
[18]Morel, Y. G.; Carton, X. J.: J. fluid mech., J. fluid mech. 267, 23 (1994)
[19]Van Heijst, G. I. F.; Flor, J. B.: Nature (London), Nature (London) 340, 212 (1989)
[20]Carton, X. J.; Legras, B.: J. fluid mech., J. fluid mech. 267, 53 (1994)
[21]Barba, L. A.; Leonard, A.: Phys. fluids, Phys. fluids 19, 017101 (2007)
[22]Mallier, R.; Maslowe, S. A.: Phys. fluids, Phys. fluids 5, 1074 (1994)
[23]Chow, K. W.; Ko, N. W. M.; Leung, R. C. K.; Tang, S. K.: Phys. fluids, Phys. fluids 10, No. 5, 1111 (1998)
[24]Gurarie, D.; Chow, K. W.: Phys. fluids, Phys. fluids 16, No. 9, 3296 (2004)
[25]Abrashin, A. A.; Yakubovich, E. I.: Sov. phys. Dokl., Sov. phys. Dokl. 29, 370 (1984)
[26]Kida, S.: J. phys. Soc. Japan, J. phys. Soc. Japan 50, 3517 (1981)
[27]Neu, J.: Phys. fluids, Phys. fluids 27, No. 10, 2397 (1984)
[28]Crowdy, D.: Phys. fluids, Phys. fluids 11, No. 9, 2556 (1999)
[29]Crowdy, D.: Phys. fluids, Phys. fluids 14, No. 1, 257 (2002)
[30]Crowdy, D.: J. fluid mech., J. fluid mech. 469, 209 (2002)
[31]Crowdy, D.: Phys. fluids, Phys. fluids 15, No. 12, 3710 (2003)
[32]Tur, A.; Yanovsky, V.: Phys. fluids, Phys. fluids 16, No. 8, 2877 (2004)
[33]Meleshko, V. V.; Konstantinov, M. Y.: Vortex dynamics and chaotic phenomena, (1999)
[34]Aref, H.: Annu. rev. Fluid mech., Annu. rev. Fluid mech., 173 (1986)
[35]Boyland, P.; Stremler, M.; Aref, H.: Physica D, Physica D 175, 69 (2003)
[36]Eckhart, B.; Aref, H.: Philos. trans. R. soc. Lond. ser. A, Philos. trans. R. soc. Lond. ser. A 326, 655 (1988)
[37]Aref, H.; Jones, S. W.; Mofina, S.; Zavadsky, I.: Physica D, Physica D 37, 423 (1989)
[38]Aref, H.; Rott, N.; Thomann, H.: Annu. rev. Fluid mech., Annu. rev. Fluid mech. 24, 1 (1992)
[39]Newton, P. K.; Shokraneh, H.: Proc. R. Soc. A, Proc. R. Soc. A 462, 149 (2006)
[40]Marmanis, H.: Proc. R. Soc. lond. Ser. A, Proc. R. Soc. lond. Ser. A 464, 586 (1998)
[41]Newton, P. K.; Shokraneh, H.: Proc. R. Soc. A, Proc. R. Soc. A 464, 1525 (2008)
[42]Flierl, G. R.; Larichev, V. D.; Mcwilliams, J. C.; Reznik, G. M.: Dyn. atmos. Oceans, Dyn. atmos. Oceans 5, 1 (1980)
[43]Hobson, D. D.: Phys. fluids A, Phys. fluids A 3, No. 12, 3027 (1991)
[44]Su, X. N.; Horton, W.; Morrison, P. J.: Phys. fluids B, Phys. fluids B 3, No. 4, 921 (1991)
[45]Matsuoka, C.; Nosaki, K.: Phys. fluids B, Phys. fluids B 4, No. 3, 551 (1992)
[46]Kono, M.; Horton, W.: Phys. fluids B, Phys. fluids B 3, No. 12, 3255 (1991)
[47]Fuentes, O. G. V.; Van Heijst, G. J. F.: Phys. fluids, Phys. fluids 7, No. 11, 2735 (1995)
[48]Yanovsky, V.; Tur, A.; Kulik, K.: Phys. lett. A, Phys. lett. A 373, 2484 (2009)
[49]Kulik, K.; Tur, A.; Yanovsky, V.: Theoret. math. Phys., Theoret. math. Phys. 162, 383 (2010)
[50]Hartman, P.: Ordinary differential equations, (1964) · Zbl 0125.32102
[51]Nemitsky, V. V.; Stepanov, V. V.: Qualitative theory of differential equations, (1960) · Zbl 0089.29502
[52]Gelfand, I. M.; Shilov, G. E.: Generalized functions, (1967)