zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The Hahn quantum variational calculus. (English) Zbl 1218.49026
Summary: We introduce the Hahn quantum variational calculus. Necessary and sufficient optimality conditions for the basic, isoperimetric, and Hahn quantum Lagrange problems, are studied. We also show the validity of Leitmann’s direct method for the Hahn quantum variational calculus, and give explicit solutions to some concrete problems. To illustrate the results, we provide several examples and discuss a quantum version of the well known Ramsey model of economics.
49K10Free problems in several independent variables (optimality conditions)
81Q93Quantum control
[1]Almeida, R., Torres, D.F.M.: Hölderian variational problems subject to integral constraints. J. Math. Anal. Appl. 359(2), 674–681 (2009) · Zbl 1169.49016 · doi:10.1016/j.jmaa.2009.06.029
[2]Bangerezako, G.: Variational q-calculus. J. Math. Anal. Appl. 289(2), 650–665 (2004) · Zbl 1043.49001 · doi:10.1016/j.jmaa.2003.09.004
[3]Bangerezako, G.: Variational calculus on q-nonuniform lattices. J. Math. Anal. Appl. 306(1), 161–179 (2005) · Zbl 1095.49005 · doi:10.1016/j.jmaa.2004.12.029
[4]Cresson, J., Frederico, G.S.F., Torres, D.F.M.: Constants of motion for non-differentiable quantum variational problems. Topol. Methods Nonlinear Anal. 33(2), 217–231 (2009)
[5]Kac, V., Cheung, P.: Quantum Calculus. Springer, New York (2002)
[6]Hahn, W.: Über orthogonalpolynome, die q-differenzenlgleichungen genügen. Math. Nachr. 2, 4–34 (1949) · Zbl 0031.39001 · doi:10.1002/mana.19490020103
[7]Gasper, G., Rahman, M.: Basic Hypergeometric Series, 2nd edn. Cambridge Univ. Press, Cambridge (2004)
[8]Jackson, F.H.: Basic integration. Q. J. Math., Oxf. Ser. (2) 2, 1–16 (1951) · Zbl 0042.07502 · doi:10.1093/qmath/2.1.1
[9]Bird, M.T.: On generalizations of sum formulas of the Euler-Maclaurin type. Am. J. Math. 58(3), 487–503 (1936) · doi:10.2307/2370965
[10]Jagerman, D.L.: Difference Equations with Applications to Queues. Dekker, New York (2000)
[11]Jordan, C.: Calculus of Finite Differences, 3rd edn. Chelsea, New York (1965). Introduction by Carver, H.C.
[12]Álvarez-Nodarse, R.: On characterizations of classical polynomials. J. Comput. Appl. Math. 196(1), 320–337 (2006) · Zbl 1108.33008 · doi:10.1016/j.cam.2005.06.046
[13]Costas-Santos, R.S., Marcellán, F.: Second structure relation for q-semiclassical polynomials of the Hahn tableau. J. Math. Anal. Appl. 329(1), 206–228 (2007) · Zbl 1113.33022 · doi:10.1016/j.jmaa.2006.06.036
[14]Dobrogowska, A., Odzijewicz, A.: Second order q-difference equations solvable by factorization method. J. Comput. Appl. Math. 193(1), 319–346 (2006) · Zbl 1119.39017 · doi:10.1016/j.cam.2005.06.009
[15]Kwon, K.H., Lee, D.W., Park, S.B., Yoo, B.H.: Hahn class orthogonal polynomials. Kyungpook Math. J. 38(2), 259–281 (1998)
[16]Petronilho, J.: Generic formulas for the values at the singular points of some special monic classical H q,ω -orthogonal polynomials. J. Comput. Appl. Math. 205(1), 314–324 (2007) · Zbl 1119.33010 · doi:10.1016/j.cam.2006.05.005
[17]Aldwoah, K.A.: Generalized time scales and associated difference equations. Ph.D. Thesis, Cairo University (2009)
[18]Annaby, M.H., Hamza, A.E., Aldwoah, K.A.: Hahn difference operator and associated Jackson-Nörlund integrals. Preprint (2009)
[19]Kelley, W.G., Peterson, A.C.: Difference Equations, 2nd edn. Harcourt/Academic Press, San Diego (2001)
[20]Fort, T.: The calculus of variations applied to Nörlund’s sum. Bull. Am. Math. Soc. 43(12), 885–887 (1937) · doi:10.1090/S0002-9904-1937-06674-2
[21]Leitmann, G.: A note on absolute extrema of certain integrals. Int. J. Non-Linear Mech. 2, 55–59 (1967) · Zbl 0148.10702 · doi:10.1016/0020-7462(67)90018-2
[22]Carlson, D.A.: An observation on two methods of obtaining solutions to variational problems. J. Optim. Theory Appl. 114(2), 345–361 (2002) · Zbl 1017.49002 · doi:10.1023/A:1016035718160
[23]Carlson, D.A., Leitmann, G.: Coordinate transformation method for the extremization of multiple integrals. J. Optim. Theory Appl. 127(3), 523–533 (2005) · Zbl 1183.49018 · doi:10.1007/s10957-005-7500-2
[24]Carlson, D.A., Leitmann, G.: A direct method for open-loop dynamic games for affine control systems. In: Dynamic Games: Theory and Applications, pp. 37–55. Springer, New York (2005)
[25]Carlson, D.A., Leitmann, G.: Fields of extremals and sufficient conditions for the simplest problem of the calculus of variations. J. Glob. Optim. 40(1–3), 41–50 (2008) · Zbl 1194.49022 · doi:10.1007/s10898-007-9171-z
[26]Leitmann, G.: On a class of direct optimization problems. J. Optim. Theory Appl. 108(3), 467–481 (2001) · Zbl 0983.49002 · doi:10.1023/A:1017507006157
[27]Leitmann, G.: Some extensions to a direct optimization method. J. Optim. Theory Appl. 111(1), 1–6 (2001) · Zbl 0999.49017 · doi:10.1023/A:1017560112706
[28]Leitmann, G.: On a method of direct optimization. Vychisl. Tekhnol. 7, 63–67 (2002)
[29]Leitmann, G.: A direct method of optimization and its application to a class of differential games. Cubo Mat. Educ. 5(3), 219–228 (2003)
[30]Leitmann, G.: A direct method of optimization and its application to a class of differential games. Dyn. Contin. Discrete Impuls. Syst. Ser. A, Math. Anal. 11(2–3), 191–204 (2004)
[31]Malinowska, A.B., Torres, D.F.M.: Leitmann’s direct method of optimization for absolute extrema of certain problems of the calculus of variations on time scales. Appl. Math. Comput. (2010, in press). DOI: 10.1016/j.amc.2010.01.015
[32]Silva, C.J., Torres, D.F.M.: Absolute extrema of invariant optimal control problems. Commun. Appl. Anal. 10(4), 503–515 (2006)
[33]Torres, D.F.M., Leitmann, G.: Contrasting two transformation-based methods for obtaining absolute extrema. J. Optim. Theory Appl. 137(1), 53–59 (2008) · Zbl 1147.49002 · doi:10.1007/s10957-007-9292-z
[34]Wagener, F.O.O.: On the Leitmann equivalent problem approach. J. Optim. Theory Appl. 142(1), 229–242 (2009) · Zbl 1178.49027 · doi:10.1007/s10957-009-9513-8
[35]Aldwoah, K.A., Hamza, A.E.: Difference time scales. Int. J. Math. Stat. 9(A11), 106–125 (2011)
[36]Jackson, F.H.: On q-definite integrals. Q. J. Pure Appl. Math. 41, 193–203 (1910)
[37]Fort, T.: Finite Differences and Difference Equations in the Real Domain. Clarendon, Oxford (1948)
[38]Nörlund, N.: Vorlesungen über Differencenrechnung. Springer, Berlin (1924)
[39]Bohner, M.: Calculus of variations on time scales. Dyn. Syst. Appl. 13(3–4), 339–349 (2004)
[40]van Brunt, B.: The Calculus of Variations. Springer, New York (2004)
[41]Arutyunov, A.V.: Optimality Conditions–Abnormal and Degenerate Problems. Kluwer Acad. Publ., Dordrecht (2000)
[42]Torres, D.F.M.: On the Noether theorem for optimal control. Eur. J. Control 8(1), 56–63 (2002) · doi:10.3166/ejc.8.56-63
[43]Torres, D.F.M.: Proper extensions of Noether’s symmetry theorem for nonsmooth extremals of the calculus of variations. Commun. Pure Appl. Anal. 3(3), 491–500 (2004) · Zbl 1058.49019 · doi:10.3934/cpaa.2004.3.491
[44]Torres, D.F.M.: Carathéodory equivalence Noether theorems, and Tonelli full-regularity in the calculus of variations and optimal control. J. Math. Sci. (N. Y.) 120(1), 1032–1050 (2004) · Zbl 1084.49022 · doi:10.1023/B:JOTH.0000013565.78376.fb
[45]Gouveia, P.D.F., Torres, D.F.M.: Automatic computation of conservation laws in the calculus of variations and optimal control. Comput. Methods Appl. Math. 5(4), 387–409 (2005)
[46]Gouveia, P.D.F., Torres, D.F.M., Rocha, E.A.M.: Symbolic computation of variational symmetries in optimal control. Control Cybern. 35(4), 831–849 (2006)
[47]Atici, F.M., McMahan, C.S.: A comparison in the theory of calculus of variations on time scales with an application to the Ramsey model. Nonlinear Dyn. Syst. Theory 9(1), 1–10 (2009)
[48]Barro, R.J., Sala-i-Martin, X.: Economic Growth. MIT Press, Cambridge (1999)
[49]Aulbach, B., Hilger, S.: A unified approach to continuous and discrete dynamics. In: Qualitative Theory of Differential Equations, Szeged, 1988. Colloq. Math. Soc. János Bolyai, vol. 53, pp. 37–56. North-Holland, Amsterdam (1990)
[50]Nottale, L.: The theory of scale relativity. Int. J. Mod. Phys. A 7(20), 4899–4936 (1992) · Zbl 0954.81501 · doi:10.1142/S0217751X92002222