zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Numerical approaches to fractional calculus and fractional ordinary differential equation. (English) Zbl 1218.65070
Summary: Nowadays, fractional calculus are used to model various different phenomena in nature, but due to the non-local property of the fractional derivative, it still remains a lot of improvements in the present numerical approaches. In this paper, some new numerical approaches based on piecewise interpolation for fractional calculus, and some new improved approaches based on the Simpson method for the fractional differential equations are proposed. We use higher order piecewise interpolation polynomial to approximate the fractional integral and fractional derivatives, and use the Simpson method to design a higher order algorithm for the fractional differential equations. Error analyses and stability analyses are also given, and the numerical results show that these constructed numerical approaches are efficient.
MSC:
65L05Initial value problems for ODE (numerical methods)
34A08Fractional differential equations
34A34Nonlinear ODE and systems, general
65L20Stability and convergence of numerical methods for ODE
65L70Error bounds (numerical methods for ODE)
References:
[1]Oldham, K. B.; Spanier, J.: The fractional calculus: theory and applications of differentiation and integration to arbitrary order, (1974)
[2]Podlubny, I.: Fractional differential equations, (1999)
[3]Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives theory and applications, (1993) · Zbl 0818.26003
[4]Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and application of fractional differential equations, (2006)
[5]Odibat, Z.: Approximations of fractional integral and Caputo fractional derivatives, Appl. math. Comput. 178, 527-533 (2006) · Zbl 1101.65028 · doi:10.1016/j.amc.2005.11.072
[6]Diethelm, K.; Ford, N. J.; Freed, A. D.; Luchko, Y.: Algorithms for the fractional calculus: a selection of numerical methods, Comput. methods appl. Mech. eng. 194, No. 6 – 8, 743-773 (2005) · Zbl 1119.65352 · doi:10.1016/j.cma.2004.06.006
[7]Lubich, C.: Discretized fractional calculus, SIAM J. Math. anal. 17, No. 3, 704-719 (1986) · Zbl 0624.65015 · doi:10.1137/0517050
[8]Deng, W.: Short memory principle and a predictor – corrector approach for fractional differential equations, J. comput. Appl. math. 206, 174-188 (2007) · Zbl 1121.65128 · doi:10.1016/j.cam.2006.06.008
[9]Yuan, L.; Agrawal, O. P.: A numerical scheme for dynamic systems containing fractional derivatives, ASME J. Vibr. acoust. 124, 321-324 (2002)
[10]Diethelm, K.: An improvement of a nonclassical numerical method for the computation of fractional derivatives, Numer. algorithms 47, 190-361 (2008)
[11]Murio, D. A.: On the stable numerical evaluation of Caputo fractional derivatives, Comput. math. Appl. 51, 1539-1550 (2006) · Zbl 1134.65335 · doi:10.1016/j.camwa.2005.11.037
[12]Miyakoda, T.: Discretized fractional calculus with a series of Chebyshev polynomial, Electron. notes theor. Comput. sci. 225, 239-244 (2009)
[13]Dithelm, K.; Ford, N. J.; Freed, A. D.: A predictor – corrector approach for the numerical solution of fractional differential equations, Nonlinear dyn. 29, 3-22 (2002) · Zbl 1009.65049 · doi:10.1023/A:1016592219341
[14]Dithelm, K.; Ford, N. J.; Freed, A. D.: Detailed error analysis for a fractional Adams method, Numer. algorithms 36, 31-52 (2004) · Zbl 1055.65098 · doi:10.1023/B:NUMA.0000027736.85078.be
[15]Li, C. P.; Tao, C. X.: On the fractional Adams method, Comput. math. Appl. 58, No. 8, 1573-1588 (2009)
[16]Li, C. P.; Wang, Y. H.: Numerical algorithm based on Adomian decomposition for fractional differential equations, Comput. math. Appl. 57, 1672-1681 (2009) · Zbl 1186.65110 · doi:10.1016/j.camwa.2009.03.079
[17]Agrawal, O. P.: A general finite element formulation for fractional variational problems, J. math. Anal. appl. 337, 1-12 (2008) · Zbl 1123.65059 · doi:10.1016/j.jmaa.2007.03.105
[18]Tang, T.: A finite difference scheme for partial integro-differential equations with weakly singular kernel, Appl. numer. Math. 11, 309-319 (1993) · Zbl 0768.65093 · doi:10.1016/0168-9274(93)90012-G
[19]Sheng, Q.; Tang, T.: Optimal convergence of an Euler and finite difference method for nonlinear partial integro-differential equations, Math. comput. Model. 21, 1-11 (1995) · Zbl 0828.65148 · doi:10.1016/0895-7177(95)00066-B
[20]Podlubny, I.: Matrix approach to discrete fractional calculus, Int. J. Theor. appl. 3, 359-386 (2000) · Zbl 1030.26011
[21]Podlubny, I.; Chechkin, A.; Skovranek, T.; Chen, Y.; Jara, B. M. V.: Matrix approach to discrete fractional calculus. II: partial fractional differential equations, J. comput. Phys. 228, 3137-3153 (2009) · Zbl 1160.65308 · doi:10.1016/j.jcp.2009.01.014
[22]Yang, Q.; Liu, F.; Turner, I.: Numerical methods for fractional partial differential equations with Riesz space fractional derivatives, Appl. math. Model. 34, 200-218 (2010) · Zbl 1185.65200 · doi:10.1016/j.apm.2009.04.006
[23]Lin, R.; Liu, F.: Fractional high order methods for the nonlinear fractional ordinary differential equation, Nonlinear anal. 66, 856-869 (2007) · Zbl 1118.65079 · doi:10.1016/j.na.2005.12.027
[24]Li, X.; Xu, C.: Existence and uniqueness of the weak solution of the space – time fractional diffusion equation and a spectral method approximation, Commun. comput. Phys. 8, 1016-1051 (2010)
[25]Xi, M.: Numerical analysis method, (2004)
[26]Odibat, Z.: Computational algorithms for computing the fractional derivatives of functions, Math. comput. Simul. 79, No. 7, 2013-2020 (2009) · Zbl 1161.65319 · doi:10.1016/j.matcom.2008.08.003
[27]Gerald, C.; Wheatley, P.: Applied numerical analysis, (2004)
[28]Diethelm, K.: An algorithm for the numerical solution of differential equations of fractional order, Electron. trans. Numer. anal. 5, 1-6 (1997) · Zbl 0890.65071 · doi:emis:journals/ETNA/vol.5.1997/pp1-6.dir/pp1-6.html
[29]Thomas, J. W.: Numerical partial differential equations: finite difference methods, (1995)