zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Recovering low-rank and sparse components of matrices from incomplete and noisy observations. (English) Zbl 1218.90115
Summary: Many problems can be characterized by the task of recovering the low-rank and sparse components of a given matrix. Recently, it was discovered that this nondeterministic polynomial-time hard (NP-hard) task can be well accomplished, both theoretically and numerically, via heuristically solving a convex relaxation problem where the widely acknowledged nuclear norm and l 1 norm are utilized to induce low-rank and sparsity. This paper studies the recovery task in the general settings that only a fraction of entries of the matrix can be observed and the observation is corrupted by both impulsive and Gaussian noise. We show that the resulting model falls into the applicable scope of the classical augmented Lagrangian method. Moreover, the separable structure of the new model enables us to solve the involved subproblems more efficiently by splitting the augmented Lagrangian function. Hence, some splitting numerical algorithms are developed for solving the new recovery model. Some preliminary numerical experiments verify that these augmented-Lagrangian-based splitting algorithms are easily implementable and surprisingly efficient for tackling the new recovery model.
MSC:
90C06Large-scale problems (mathematical programming)
90C22Semidefinite programming
90C25Convex programming
90C59Approximation methods and heuristics
93B30System identification
Software:
SDPT3; PROPACK; SeDuMi