zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Fractional dynamics in DNA. (English) Zbl 1218.92038
Summary: This paper addresses the DNA code analysis in the perspective of dynamics and fractional calculus. Several mathematical tools are selected to establish a quantitative method without distorting the alphabet represented by the sequence of DNA bases. The association of Gray code, Fourier transform and fractional calculus leads to a categorical representation of species and chromosomes.
MSC:
92C40Biochemistry, molecular biology
37N25Dynamical systems in biology
37F99Complex dynamical systems
References:
[1]Schuh, R. T.; Brower, A. V. Z.: Biological systematics: principles and applications, (2009)
[2]The tree of life project – lt;http://tolweb.org/tree/home.pages/abouttol.htmlgt;.
[3]Oldham, Keith B.; Spanier, Jerome: The fractional calculus: theory and application of differentiation and integration to arbitrary order, (1974)
[4]Bagley, R. L.; Torvik, P. J.: Fractional calculus – a different approach to the analysis of viscoelastically damped structures, Aiaa j 21, No. 5, 741-748 (1983) · Zbl 0514.73048 · doi:10.2514/3.8142
[5]Oustaloup, A.: La commande CRONE: commande robuste d’ordre non entier, (1991) · Zbl 0864.93003
[6]Samko, Stefan G.; Kilbas, Anatoly A.; Marichev, Oleg I.: Fractional integrals and derivatives: theory and applications, (1993) · Zbl 0818.26003
[7]Miller, Kenneth S.; Ross, Bertram: An introduction to the fractional calculus and fractional differential equations, (1993)
[8]Anastasio, Thomas J.: The fractional-order dynamics of brainstem vestibulo-oculomotor neurons, Biol cybernet 72, 69-79 (1994)
[9]Machado, J. A. Tenreiro: Analysis and design of fractional-order digital control systems, J syst anal model simul 27, 107-122 (1997) · Zbl 0875.93154
[10]Podlubny, I.: Fractional differential equations, (1999)
[11]Zaslavsky, George M.: Hamiltonian chaos and fractional dynamics, (2005)
[12]Kilbas, Anatoly A.; Srivastava, Hari M.; Trujillo, Juan J.: Theory and applications of fractional differential equations, (2006)
[13]Tarasov, Vasily E.: Fractional dynamics: applications of fractional calculus to dynamics of particles, fields and media, (2010)
[14]Mainardi, Francesco: Fractional calculus and waves in linear viscoelasticity: an introduction to mathematical models, (2010)
[15]Ionescu, Clara; Machado, J. Tenreiro: Mechanical properties and impedance model for the branching network of the seiva system in the leaf of hydrangea macrophylla, Nonlinear dyn 60, No. 1-2, 207-216 (2010) · Zbl 1189.92068 · doi:10.1007/s11071-009-9590-0
[16]Machado, J. Tenreiro; Kiryakova, Virginia; Mainardi, Francesco: Recent history of fractional calculus, Communications in nonlinear science and numerical simulations 16 (2011) · Zbl 1221.26002 · doi:10.1016/j.cnsns.2010.05.027
[17]The Official Web Site of the Nobel Prize, lt;http://nobelprize.org/nobelprizes/medicine/laureates/1968/gt;.
[18], Advances in biochemical engineering biotechnology (2007)
[19]Pearson, H.: Genetics: what is a gene?, Nature 441, No. 7092, 398-401 (2006)
[20]UCSC genome bioinformatics – lt;http://hgdownload.cse.ucsc.edu/downloads.htmlgt;.
[21]Sims, Gregory E.; Jun, Se-Ran; Wu, Guohong A.; Kim, Sung-Hou: Alignment-free genome comparison with feature frequency profiles (FFP) and optimal resolutions, Proc nat acad sci united states of America 106, No. 8, 2677-2682 (2009)
[22]Murphy, William J.; Pringle, Thomas H.; Crider, Tess A.; Springer, Mark S.; Miller, Webb: Using genomic data to unravel the root of the placental mammal phylogeny, Genome res 17, 413-421 (2007)
[23]Zhao, Hao; Bourque, Guillaume: Recovering genome rearrangements in the mammalian phylogeny, Genome res 19, 934-942 (2009)
[24]Prasad, Arjun B.; Allard, Marc W.: Confirming the phylogeny of mammals by use of large comparative sequence data sets, Mol biol evolution 25, No. 9, 1795-1808 (2008)
[25]Ebersberger, Ingo; Galgoczy, Petra; Taudien, Stefan; Taenzer, Simone; Platzer, Matthias; Von Haeseler, Arndt: Mapping human genetic ancestry, Mol biol evolution 24, No. 10, 2266-2276 (2007)
[26]Dunn, Casey W.: Broad phylogenomic sampling improves resolution of the animal tree of life, Nature 452, 745-750 (2008)
[27]Hillier, Ladeana W.: International chicken genome sequencing consortium, Nature 432, 695-716 (2004)
[28]Paul E Black. Gray code. In: Paul E Black, editor. Dictionary of algorithms and data structures [online], U.S. National Institute of Standards and Technology, 31 August 2009.
[29]Tiwari, Shrish; Ramachandran, S.; Bhattacharya, Alok; Bhattacharya, Sudha; Ramaswamy, Ramakrishna: Prediction of probable genes by Fourier analysis of genomic sequences, Comput appl biosci 13, No. 3, 263-270 (1997)
[30]Dodin, Guy; Vandergheynst, Pierre; Levoir, Patrick; Cordier, Christine; Marcourt, Laurence: Fourier and wavelet transform analysis, a tool for visualizing regular patterns in DNA sequences, J theor biol 206, No. 3, 323-326 (2000)
[31]Afreixo, Vera; Ferreira, Paulo J. S. G.; Santos, Dorabella: Fourier analysis of symbolic data: a brief review, Digital signal process 14, 523-530 (2004)
[32]Afreixo, Vera; Ferreira, Paulo J. S. G.; Santos, Dorabella: Spectrum and symbol distribution of nucleotide sequences, Phys rev E 70, No. 3, 031910 (2004)
[33]Yin, Changchuan; Yau, Stephen S. -T.: A Fourier characteristic of coding sequences: origins and a non-Fourier approximation, J comput biol 12, No. 9, 1153-1165 (2005)
[34]Vincent A Emanuele II, Thao T Tran, Tong Zhou G. A Fourier product method for detecting approximate TANDEM repeats in DNA. In: 2005 IEEE/SP 13th workshop on statistical signal processing, Bordeaux, France, 17 – 20 July; 2005, p. 1390 – 95.
[35]Leitão, Helena Cristina G.; Pessôa, Luciana S.; Stolfi, Jorge: Mutual information content of homologous DNA sequences, Genet mol res 4, No. 3, 553-562 (2005)
[36]Jeng, Cheng-Chang; Yang, I-Ching; Hsieh, Kun-Lin; Lin, Chun-Nan: Clustering analysis for bacillus genus using Fourier transform and self-organizing map, ICONIP 2006, part III, LNCS 4234, 48-57 (2006)
[37]Yu Zhou, Li-Qian Zhou, Zu-Guo Yu, Vo Anh. Distinguish coding and noncoding sequences in a complete genome using Fourier transform. In: IEEE third international conference on natural computation, Haikou, China; 2007, p. 295 – 299.
[38]Yin, Changchuan; Yau, Stephen S. -T.: Numerical representation of DNA sequences based on genetic code context and its applications in periodicity analysis of genomes, IEEE symposium on computational intelligence in bioinformatics and computational biology (2008)
[39]Arniker, Swarna Bai; Kwan, Hon Keung: Graphical representation of DNA sequences, 2009 IEEE international conference on electro/information technology (2009)
[40]Roman, H. Eduardo; Porto, Markus: Fractional derivatives of random walks: time series with long-time memory, Phys rev E 78, No. 3, 031127 (2008)
[41]Machado, J. A. Tenreiro: Fractional derivatives: probability interpretation and frequency response of rational approximations, Communications in nonlinear science and numerical simulations 14 (2009)
[42]Nigmatullin, R. R.; Baleanu, D.: Is it possible to derive Newtonian equations of motion with memory?, Int J theor phys 49, No. 4, 701-708 (2010) · Zbl 1190.83017 · doi:10.1007/s10773-010-0249-x