zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Asymptotic properties of a stochastic predator-prey system with Holling II functional response. (English) Zbl 1218.92072
Summary: A stochastic predator-prey system with Holling II functional response is proposed and investigated. We show that there is a unique positive solution to the model for any positive initial value, and that the positive solution to the stochastic system is stochastically bounded. Moreover, under some conditions, we conclude that the stochastic model is stochastically permanent and persistent in mean.
MSC:
92D40Ecology
60H10Stochastic ordinary differential equations
60H30Applications of stochastic analysis
References:
[1]Li, Y.; Gao, H.: Existence,uniqueness and global asymptotic stability of positive solutions of a predator – prey system with Holling II functional response with random perturbation, Nonlinear anal 68, 1694-1705 (2008) · Zbl 1143.34033 · doi:10.1016/j.na.2007.01.008
[2]Chen, L.; Chen, J.: Nonlinear biological dynamical system, (1993)
[3]Liu, M.; Wang, K.: Global stability of a nonlinear stochastic predator – prey system with beddington – deangelis functional response, Commun nonlinear sci numer simulat 16, 1114-1121 (2011) · Zbl 1221.34152 · doi:10.1016/j.cnsns.2010.06.015
[4]Ji, C.; Jiang, D.; Shi, N.: Analysis of a predator – prey model with modified Leslie – gower and Holling-type II schemes with stochastic perturbation, J math anal appl 359, 482-498 (2009) · Zbl 1190.34064 · doi:10.1016/j.jmaa.2009.05.039
[5]Mao, X.; Marion, G.; Renshaw, E.: Environmental Brownian noise suppresses explosions in population dynamics, Stochastic process appl 97, 95-110 (2002) · Zbl 1058.60046 · doi:10.1016/S0304-4149(01)00126-0
[6]Jiang, D.; Shi, N.; Li, X.: Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation, J math anal appl 340, 588-597 (2008) · Zbl 1140.60032 · doi:10.1016/j.jmaa.2007.08.014
[7]Mao, X.; Sabanis, S.; Renshaw, E.: Asymptotic behaviour of stochastic Lotka – Volterra model, J math anal appl 287, 141-156 (2003) · Zbl 1048.92027 · doi:10.1016/S0022-247X(03)00539-0
[8]Soboleva, T. K.; Pleasants, A. B.: Population growth as a nonlinear stochastic process, Math comput model 38, 1437-1442 (2003) · Zbl 1044.60047 · doi:10.1016/S0895-7177(03)90147-6
[9]Du, N. H.; Sam, V. H.: Dynamics of a stochastic Lotka – Volterra model perturbed by white noise, J math anal appl 32, 482-497 (2006)
[10]Li, X.; Mao, X.: Population dynamical behavior of non-autonomous Lotka – Volterra competitive system with random perturbation, Discrete contin dyn syst 24, 523-545 (2009) · Zbl 1161.92048 · doi:10.3934/dcds.2009.24.523
[11]Ji, C.; Jiang, D.; Li, X.: Qualitative analysis of a stochastic ratio-dependent predator-prey system, J comput appl math 235, 1326-1341 (2010) · Zbl 1229.92076 · doi:10.1016/j.cam.2010.08.021
[12]Higham, D. J.: An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM rev 43, 525-546 (2001) · Zbl 0979.65007 · doi:10.1137/S0036144500378302