zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust H finite-horizon filtering with randomly occurred nonlinearities and quantization effects. (English) Zbl 1218.93103
Summary: In this paper, the robust H finite-horizon filtering problem is investigated for discrete time-varying stochastic systems with polytopic uncertainties, randomly occurred nonlinearities as well as quantization effects. The randomly occurred nonlinearity, which describes the phenomena of a nonlinear disturbance appearing in a random way, is modeled by a Bernoulli distributed white sequence with a known conditional probability. A new robust H filtering technique is developed for the addressed ItĂ´-type discrete time-varying stochastic systems. Such a technique relies on the forward solution to a set of recursive linear matrix inequalities and is therefore suitable for on-line computation. It is worth mentioning that, in the filtering process, the information of both the current measurement and the previous state estimate is employed to estimate the current state. Finally, a simulation example is exploited to show the effectiveness of the method proposed in this paper.
MSC:
93E11Filtering in stochastic control
93E03General theory of stochastic systems
93C55Discrete-time control systems
93B36H -control