zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On a generalized time-varying SEIR epidemic model with mixed point and distributed time-varying delays and combined regular and impulsive vaccination controls. (English) Zbl 1219.34104
Summary: This paper discusses a generalized time-varying SEIR disease propagation model subject to delays which potentially involves mixed regular and impulsive vaccination rules. The model takes also into account the natural population growth and the mortality associated to the disease, and the potential presence of disease endemic thresholds for both the infected and infectious population dynamics as well as the loss of immunity of newborns. The presence of outsider infections is also considered. It is assumed that there is a finite number of time-varying distributed delays in the susceptible-infected coupling dynamics influencing the susceptible and infected differential equations. It is also assumed that there are time-varying point delays for the susceptible-infected coupled dynamics influencing the infected, infectious, and removed-by-immunity differential equations. The proposed regular vaccination control objective is the tracking of a prescribed suited infectious trajectory for a set of given initial conditions. The impulsive vaccination can be used to improve discrepancies between the SEIR model and a suitable reference one.
MSC:
34K60Qualitative investigation and simulation of models
92D30Epidemiology
92C60Medical epidemiology
34D05Asymptotic stability of ODE
References:
[1]
[2]
[3]
[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]
[27]
[28]