zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New solitary wave solutions to nonlinear evolution equations by the exp-function method. (English) Zbl 1219.35224
Summary: A new application of the exp-function method in combination with the dependent variable transformation from singularity analysis is proposed for constructing new generalized solitary wave solutions and periodic wave solutions for nonlinear evolution equations. The Korteweg-de Vries equation is chosen to illustrate the validity and applicability of the suggested approach.
35Q53KdV-like (Korteweg-de Vries) equations
35C08Soliton solutions of PDE
[1]He, J. H.; Wu, X. H.: Exp-function method for nonlinear wave equations, Chaos solitons fractals 30, 700-708 (2006) · Zbl 1141.35448 · doi:10.1016/j.chaos.2006.03.020
[2]Zhu, S. D.: Exp-function method for the hybrid-lattice system, Int. J. Nonlinear sci. Numer. simul. 8, 461-464 (2007)
[3]Zhu, S. D.: Exp-function method for the discrete mkdv lattice, Int. J. Nonlinear sci. Numer. simul. 8, 465-469 (2007)
[4]Zhang, S.: Explicit and exact nontravelling wave solutions of konopelchenko–dubrovsky equations, Z. naturforsch. 62a, 689-697 (2007) · Zbl 1203.35256 · doi:http://www.znaturforsch.com/aa/v62a/c62a.htm
[5]Zhang, S.: Application of exp-function method to a KdV equation with variable coefficients, Phys. lett. A 365, 448-453 (2007) · Zbl 1203.35255 · doi:10.1016/j.physleta.2007.02.004
[6]Zhang, S.: Exp-function method: solitary, periodic and rational wave solutions of nonlinear evolution equations, Nonlinear sci. Lett. A 1, 143-146 (2010)
[7]Bekir, A.; Boz, A.: Exact solutions for a class of nonlinear partial differential equations using exp-function method, Int. J. Nonlinear sci. Numer. simul. 8, 505-512 (2007)
[8]He, J. H.: An elementary introduction to recently developed asymptotic methods and nanomechanics in textile engineering, Internat. J. Modern phys. B 22, 3487-3578 (2008) · Zbl 1149.76607 · doi:10.1142/S0217979208048668
[9]Zhou, X. W.; Wen, Y. X.; He, J. H.; Wen, Y. X.; He, J. H.: Exp-function method to solve the nonlinear dispersive K(m,n) equations, Int. J. Nonlinear sci. Numer. simul. 9, 301-306 (2008)
[10]Dai, C. -Q.; Wang, Y. -Y.: Exact travelling wave solutions of Toda lattice equations obtained via the exp-function method, Z. naturforsch. 63a, 657-663 (2008)
[11]Bekir, A.; Boz, A.: Exact solutions for nonlinear evolution equations using exp-function method, Phys. lett. A 372, 1619-1625 (2008) · Zbl 1217.35151 · doi:10.1016/j.physleta.2007.10.018
[12]Chun, C.: Solitons and periodic solutions for the fifth-order KdV equation with the exp-function method, Phys. lett. A 372, 2760-2766 (2008) · Zbl 1220.35148 · doi:10.1016/j.physleta.2008.01.005
[13]He, J. H.; Zhang, L. N.: Generalized solitary solution and compacton-like solution of the Jaulent–Miodek equations using the exp-function method, Phys. lett. A 372, 1044-1047 (2008) · Zbl 1217.35152 · doi:10.1016/j.physleta.2007.08.059
[14]Ebaid, A.: Exact solitary wave solutions for some nonlinear evolution equations via exp-function method, Phys. lett. A 365, 213-219 (2007) · Zbl 1203.35213 · doi:10.1016/j.physleta.2007.01.009
[15]Wang, D.; Zhang, H. Q.: Further improved F-expansion method and new exact solutions of konopelchenko–dubrovsky equation, Chaos solitons fractals 25, 601-610 (2005) · Zbl 1083.35122 · doi:10.1016/j.chaos.2004.11.026
[16]Yusufoglu, E.; Bekir, A.: The tanh and the sine–cosine methods for exact solutions of the MBBM and the Vakhnenko equations, Chaos solitons fractals 38, 1126-1133 (2008) · Zbl 1152.35485 · doi:10.1016/j.chaos.2007.02.004
[17]Hirota, R.: The direct method in soliton theory, (2004)
[18]Clarkson, P. A.; Mansfield, E. L.: On a shallow water wave equation, Nonlinearity 7, 975-1000 (1994) · Zbl 0803.35111 · doi:10.1088/0951-7715/7/3/012