zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
The homotopy perturbation method applied to the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equations. (English) Zbl 1219.35347
Summary: The fractional derivatives in the sense of Caputo, and the homotopy perturbation method are used to construct approximate solutions for nonlinear Kolmogorov-Petrovskii-Piskunov (KPP) equations with respect to time and space fractional derivatives. Also, we apply complex transformation to convert a time and space fractional nonlinear KPP equation to an ordinary differential equation and use the homotopy perturbation method to calculate the approximate solution. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.
MSC:
35R11Fractional partial differential equations
26A33Fractional derivatives and integrals (real functions)
35A35Theoretical approximation to solutions of PDE
35A22Transform methods (PDE)
35A24Methods of ordinary differential equations for PDE
References:
[1]Podlubny, I.: Fractional differential equations, (1999)
[2]He, J. H.: Some applications of nonlinear fractional differential equations and their applications, Bull. sci. Technol. 15, No. 2, 86-90 (1999)
[3]Diethelm, K.; Luchko, Y.: Numerical solution of linear multi-term differential equations of fractional order, J. comput. Anal. appl. 6, 243-263 (2004) · Zbl 1083.65064
[4]Erturk, V. S.; Momani, Sh.; Odibat, Z.: Application of generalized differential transform method to multi-order fractional differential equations, Commun. nonlinear sci. Numer. simul. 13, 1642-1654 (2008) · Zbl 1221.34022 · doi:10.1016/j.cnsns.2007.02.006
[5]Daftardar-Gejji, V.; Bhalekar, S.: Solving multi-term linear and non-linear diffusion wave equations of fractional order by Adomian decomposition method, Appl. math. Comput. 202, 113-120 (2008) · Zbl 1147.65106 · doi:10.1016/j.amc.2008.01.027
[6]Daftardar-Gejji, V.; Jafari, H.: Solving a multi-order fractional differential equation using Adomian decomposition, Appl. math. Comput. 189, 541-548 (2007) · Zbl 1122.65411 · doi:10.1016/j.amc.2006.11.129
[7]Sweilam, N. H.; Khader, M. M.; Al-Bar, R. F.: Numerical studies for a multi-order fractional differential equation, Phys. lett. A 371, 26-33 (2007) · Zbl 1209.65116 · doi:10.1016/j.physleta.2007.06.016
[8]A. Golbabai, K. Sayevand, Fractional calculus – a new approach to the analysis of generalized fourth-order diffusion–wave equations, Comput. Math. Appl. (2011) (in press).
[9]Golbabai, A.; Sayevand, K.: The homotopy perturbation method for multi-order time fractional differential equations, Nonlinear sci. Lett. A 1, 147-154 (2010)
[10]Nikitin, A. G.; Barannyk, T. A.: Solitary waves and other solutions for nonlinear heat equations, Cent. eur. J. math. 2, 840-858 (2005) · Zbl 1116.35035 · doi:10.2478/BF02475981
[11]He, J. H.: New interpretation of homotopy perturbation method, Int. J. Modern phys. B 20, 1-7 (2006)
[12]Li, Z. B.; He, J. H.: Fractional complex transformation for fractional differential equations, Math. comput. Appl. 15, 970-973 (2010) · Zbl 1215.35164
[13]Rafiq, A.; Ahmed, M.; Hussain, S.: A general approach to specific second order ordinary differential equations using homotopy perturbation method, Phys. lett. A 372, 4973-4976 (2008) · Zbl 1221.34030 · doi:10.1016/j.physleta.2008.05.070