zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On soft topological spaces. (English) Zbl 1219.54016
Summary: We introduce soft topological spaces which are defined over an initial universe with a fixed set of parameters. The notions of soft open sets, soft closed sets, soft closure, soft interior points, soft neighborhood of a point and soft separation axioms are introduced and their basic properties are investigated. It is shown that a soft topological space gives a parametrized family of topological spaces. Furthermore, with the help of an example it is established that the converse does not hold. The soft subspaces of a soft topological space are defined and inherent concepts as well as the characterization of soft open and soft closed sets in soft subspaces are investigated. Finally, soft T i -spaces and notions of soft normal and soft regular spaces are discussed in detail. A sufficient condition for a soft topological space to be a soft T 1 -space is also presented.

54A40Fuzzy topology
54D10Lower separation axioms (T 0 T 3 , etc.)
[1]Zadeh, L. A.: Fuzzy sets, Inf. control 8, 338-353 (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[2]Atanassov, K.: Intuitionistic fuzzy sets, Fuzzy sets and systems 20, 87-96 (1986) · Zbl 0631.03040 · doi:10.1016/S0165-0114(86)80034-3
[3]Atanassov, K.: Operators over interval valued intuitionistic fuzzy sets, Fuzzy sets and systems 64, 159-174 (1994) · Zbl 0844.04001 · doi:10.1016/0165-0114(94)90331-X
[4]Gorzalzany, M. B.: A method of inference in approximate reasoning based on interval-valued fuzzy sets, Fuzzy sets and systems 21, 1-17 (1987) · Zbl 0635.68103 · doi:10.1016/0165-0114(87)90148-5
[5]Pawlak, Z.: Rough sets, Int. J. Comput. sci. 11, 341-356 (1982)
[6]Molodtsov, D.: Soft set theory first results, Comput. math. Appl. 37, 19-31 (1999) · Zbl 0936.03049 · doi:10.1016/S0898-1221(99)00056-5
[7]Maji, P. K.; Biswas, R.; Roy, R.: An application of soft sets in a decision making problem, Comput. math. Appl. 44, 1077-1083 (2002) · Zbl 1044.90042 · doi:10.1016/S0898-1221(02)00216-X
[8]Maji, P. K.; Biswas, R.; Roy, R.: Soft set theory, Comput. math. Appl. 45, 555-562 (2003)
[9]Chen, D.: The parametrization reduction of soft sets and its applications, Computers and math. With appl. 49, 757-763 (2005)
[10]D. Pie, D. Miao, From soft sets to information systems, Granular computing, 2005 IEEE Inter. Conf. 2, 617–621.
[11]Kong, Z.; Gao, L.; Wong, L.; Li, S.: The normal parameter reduction of soft sets and its algorithm, J. comp. Appl. math. 56, 3029-3037 (2008) · Zbl 1165.90699 · doi:10.1016/j.camwa.2008.07.013
[12]Zou, Yan; Xiao, Zhi: Data analysis approaches of soft sets under incomplete information, Knowl.-based syst. 21, 941-945 (2008)
[13]Aktaş, H.; Çağman, N.: Soft sets and soft groups, Inf. sci. 177, 2726-2735 (2007) · Zbl 1119.03050 · doi:10.1016/j.ins.2006.12.008
[14]Jun, Y. B.: Soft BCK/BCI-algebras, Computers and math. With appl. 56, 1408-1413 (2008)
[15]Jun, Y. B.; Park, C. H.: Applications of soft sets in ideal theory of BCK/BCI-algebras, Inform. sci. 178, 2466-2475 (2008) · Zbl 1184.06014 · doi:10.1016/j.ins.2008.01.017
[16]Feng, F.; Jun, Y. B.; Zhao, X. Z.: Soft semirings, Computers and math. With appl. 56, 2621-2628 (2008)
[17]Ali, M. I.; Feng, F.; Liu, X. Y.; Min, W. K.; Shabir, M.: On some new operations in soft set theory, Computers and math. With appl. 57, 1547-1553 (2009) · Zbl 1186.03068 · doi:10.1016/j.camwa.2008.11.009
[18]Shabir, M.; Ali, M. Irfan: Soft ideals and generalized fuzzy ideals in semigroups, New math. Nat. comput. 5, 599-615 (2009) · Zbl 1178.20061 · doi:10.1142/S1793005709001544