zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Variational iteration method and homotopy perturbation method for fourth-order fractional integro-differential equations. (English) Zbl 1219.65081
Summary: Linear and nonlinear boundary value problems for fourth-order fractional integro-differential equations are solved by variational iteration method and homotopy perturbation method. The fractional derivatives are described in the Caputo sense. The solutions of both problems are derived by infinite convergent series which are easily computable and then graphical representation shows that both methods are most effective and convenient one to solve linear and nonlinear boundary value problems for fourth-order fractional integro-differential equations.
MSC:
65L99Numerical methods for ODE
34A08Fractional differential equations
34K25Asymptotic theory of functional-differential equations
34K37Functional-differential equations with fractional derivatives
45J05Integro-ordinary differential equations
References:
[1]He, J. H.: Variational iteration method – a kind of non-linear analytical technique: some examples, International journal of nonlinear mechanics 34, 699-708 (1999)
[2]He, J. H.: Homotopy perturbation method: a new nonlinear analytic technique, Applied mathematics and computation 135, 73-79 (2003) · Zbl 1030.34013 · doi:10.1016/S0096-3003(01)00312-5
[3]He, J. H.: Homotopy perturbation technique, Computer methods in applied mechanics and engineering 178, 257-262 (1999)
[4]He, J. H.: A coupling method of homotopy technique and perturbation technique for nonlinear problems, International journal of nonlinear mechanics 35, No. 1, 37-43 (2000) · Zbl 1068.74618 · doi:10.1016/S0020-7462(98)00085-7
[5]Yildirim, Ahmet: Solution of BVPs for fourth-order integro-differentials by using homotopy perturbation method, Computers and mathematics and applications 56, 3175-3180 (2008) · Zbl 1165.65377 · doi:10.1016/j.camwa.2008.07.020
[6]Sweilam, N. H.: Fourth order integro-differential equations using variational iteration method, Computers and mathematics and applications 54, 1086-1091 (2007) · Zbl 1141.65399 · doi:10.1016/j.camwa.2006.12.055
[7]Momani, S.; Odibat, Z.: Application of homotopy-perturbation method to fractional ivps, Journal of computational and applied mathematics 207, No. 1, 96 (2007)
[8]Odibat, Z.; Momani, S.: The variational iteration method: an efficient scheme for handling fractional partial differential equations in fluid mechanics, Computers and mathematics with applications 58, 2199-2208 (2009) · Zbl 1189.65254 · doi:10.1016/j.camwa.2009.03.009
[9]Abbasbandy, S.: An approximation solution of a nonlinear equation with Riemann–Liouville’s fractional derivatives by he’s variational iteration method, Journal of computational and applied mathematics 207, 53-58 (2007) · Zbl 1120.65133 · doi:10.1016/j.cam.2006.07.011
[10]Daftardar-Gejji, V.; Jafari, Hossein: Solving a multi-order fractional differential equation using Adomian decomposition, Applied mathematics and computation 189, 541-548 (2007) · Zbl 1122.65411 · doi:10.1016/j.amc.2006.11.129
[11]Podlubny, I.: Fractional differential equations, (1999)
[12]Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation, Fractional calculus applied analysis 5, 367-386 (2002) · Zbl 1042.26003
[13]Miller, K. S.; Ross, B.: An introduction to the fractional calculus and fractional differential equations, (1993)
[14]Benson, D. A.; Wheatcraft, S. W.; Meerschaert, M. M.: Application of a fractional advection–dispersion equation, Water resource research 36, No. 6, 1403 (2000)
[15]Benson, D. A.; Wheatcraft, S. W.; Meerschaert, M. M.: Water resource research, Water resource research 36, No. 6, 1413 (2000)
[16]Momani, S.; Noor, M. Aslam: Numerical methods for fourth order fractional integro-differential equations, Applied mathematics and computations 182, 754-760 (2006) · Zbl 1107.65120 · doi:10.1016/j.amc.2006.04.041
[17]He, J. H.: Non-perturbative methods for strongly nonlinear problems, dissertation, (2006)