zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the coupling of the homotopy perturbation method and Laplace transformation. (English) Zbl 1219.65121
Summary: A Laplace homotopy perturbation method is employed for solving one-dimensional non-homogeneous partial differential equations with a variable coefficient. This method is a combination of the Laplace transform and the homotopy perturbation method (LHPM). LHPM presents an accurate methodology to solve non-homogeneous partial differential equations with a variable coefficient. The aim of using the Laplace transform is to overcome the deficiency that is mainly caused by unsatisfied conditions in other semi-analytical methods such as HPM, VIM, and ADM. The approximate solutions obtained by means of LHPM in a wide range of the problem’s domain were compared with those results obtained from the actual solutions, the homotopy perturbation method (HPM) and the finite element method. The comparison shows a precise agreement between the results, and introduces this new method as an applicable one which it needs fewer computations and is much easier and more convenient than others, so it can be widely used in engineering too.
MSC:
65M99Numerical methods for IVP of PDE
44A10Laplace transform
References:
[1]Rashidinia, J.; Mohammadi, R.: Int. J. Comput. math., Int. J. Comput. math. 85, No. 5 (2008)
[2]Lin, Y.; Gao, X. J.; Xiao, M. Q.: Numer. methods partial differential equations, Numer. methods partial differential equations 25, No. 2 (2009)
[3]Khan, Y.: Int. J. Nonlinear sci. Numer. simul., Int. J. Nonlinear sci. Numer. simul. 10, No. 11–12 (2009)
[4]Khan, Y.; Wu, Q.: Comput. math. Appl., Comput. math. Appl. (2010)
[5]Rostamian, M.; Barari, A.; Ganji, D. D.: J. phys.: conf. Ser., J. phys.: conf. Ser. 96 (2008)
[6]Wazwaz, A. M.: Appl. math. Comput., Appl. math. Comput. 142 (2003)
[7]Jang, B.: Appl. math. Comput., Appl. math. Comput. 186 (2007)
[8]He, J. H.: Comput. methods appl. Mech. engrg., Comput. methods appl. Mech. engrg. 178 (1999)
[9]He, J. H.: Internat. J. Non-linear mech., Internat. J. Non-linear mech. 35 (2000)
[10]He, J. H.: Appl. math. Comput., Appl. math. Comput. 135 (2003)
[11]He, J. H.: Internat. J. Modern phys. B, Internat. J. Modern phys. B 20 (2006)
[12]He, J. H.: Internat. J. Modern phys. B, Internat. J. Modern phys. B 20, No. 10 (2006)
[13]Ghorbani, A.; Saberi-Nadjafi, J.: Comput. math. Appl., Comput. math. Appl. 56 (2008)
[14]Odibat, Z. M.: Appl. math. Comput., Appl. math. Comput. 189 (2007)
[15]Yusufoglu, E.: Comput. math. Appl., Comput. math. Appl. 58 (2009)
[16]Abbasbandy, S.: Appl. math. Comput., Appl. math. Comput. 172 (2006)
[17]He, J. H.: Chaos solitons fractals, Chaos solitons fractals 26 (2005)
[18]He, J. H.: Phys. lett. A, Phys. lett. A 350 (2006)
[19]He, J. H.: Appl. math. Comput., Appl. math. Comput. 151 (2004)
[20]Wang, S. Q.; He, J. H.: Chaos solitons fractals, Chaos solitons fractals 35 (2008)
[21]Cai, X. C.; Wu, W. Y.; Li, M. S.: Int. J. Nonlinear sci. Numer. simul., Int. J. Nonlinear sci. Numer. simul. 7 (2006)
[22]Cveticanin, L.: Chaos solitons fractals, Chaos solitons fractals 30 (2006)
[23]Esmaeilpour, M.; Ganji, D. D.: Phys. lett. A, Phys. lett. A 372 (2007)
[24]Abbasbandy, S.: Chaos solitons fractals, Chaos solitons fractals 30 (2006)
[25]Chun, C.: Chaos solitons fractals, Chaos solitons fractals 34 (2007)
[26]Fathizadeh, M.; Rashidi, F.: Chaos solitons fractals, Chaos solitons fractals 42 (2009)
[27]Hashim, I.; Chowdhury, M. S. H.; Mawa, S.: Chaos solitons fractals, Chaos solitons fractals 36 (2008)
[28]Roohi, Ehsan: Phys. scr., Phys. scr. 79 (2009)
[29]Omidvar, M.; Barari, A.; Momeni, M.; Ganji, D. D.: Geomech. geoeng. Int. J., Geomech. geoeng. Int. J. 5 (2010)
[30]Hesameddini, E.; Latifizadeh, H.: Int. J. Nonlinear sci. Numer. simul., Int. J. Nonlinear sci. Numer. simul. 10 (2009)
[31]El-Tawil, Magdy A.; Al-Mulla, Noha A.: Math. comput. Modelling, Math. comput. Modelling 51 (2010)
[32]Sfahani, M. G.; Ganji, S. S.; Barari, A.; Mirgolbabaei, H.; Domairry, G.: Earthq. eng. Eng. vib., Earthq. eng. Eng. vib. 9 (2010)
[33]Babolian, E.; Azizi, A.; Saeidian, J.: Math. comput. Modelling, Math. comput. Modelling 50 (2009)
[34]Qarnia, H. E.: World J. Modelling simul., World J. Modelling simul. 5 (2009)
[35]Barari, A.; Ghotbi, Abdoul R.; Barari, T.; Ganji, D. D.: Int. J. Appl. math. Comput. sci, Int. J. Appl. math. Comput. sci 1 (2009)
[36]Ghotbi, A. R.; Barari, A.; Omidvar, M.; Ganji, D. D.: Appl. math. Sci., Appl. math. Sci. 3 (2009)
[37]Rice, R. G.; Do, D. D.: Applied mathematics and modeling for chemical engineers, (1995)