zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Adaptive-impulsive synchronization of chaotic systems. (English) Zbl 1219.65154
Based on the Lyapunov function concept, the authors prove an elementary result concerning the synchronization between a general chaotic system and a slave system attached to it. An effective adaptive-impulsive controller scheme is suggested in order to synchronize a quantum cellular neural network chaotic oscillator.
MSC:
65P20Numerical chaos
37M05Simulation (dynamical systems)
37D45Strange attractors, chaotic dynamics
References:
[1]Chellaboina, V.; Bhat, S. P.; Haddad, W. M.: An invariant principle for nonlinear hybrid and impulsive dynamical systems, Nonlinear anal. 53, No. 3 – 4, 527-550 (2003) · Zbl 1082.37018 · doi:10.1016/S0362-546X(02)00316-4
[2]Chen, C. S.; Chen, H. H.: Robust adaptive neural-fuzzy-network control for the synchronization of uncertain chaotic systems, Nonlinear anal.:Real world appl. 10, No. 3, 1466-1479 (2009) · Zbl 1162.34332 · doi:10.1016/j.nonrwa.2008.01.016
[3]Ge, Z. M.; Yang, C. H.: Synchronization of chaotic systems with uncertain chaotic parameters by linear coupling and pragmatical adaptive tracking, Chaos 18, No. 4, 043129 (2008)
[4]Ge, Z. M.; Yang, C. H.: The generalized synchronization of a quantum-CNN chaotic oscillator with different order systems, chaos, Soliton fract. 35, No. 5, 980-990 (2008) · Zbl 1141.37017 · doi:10.1016/j.chaos.2006.05.090
[5]Hu, M. F.; Yang, Y. Q.; Xu, Z. Y.; Guo, L. X.: Hybrid projective synchronization in a chaotic complex nonlinear system, Math. comput. Simul. 79, No. 3, 449-457 (2008) · Zbl 1151.93017 · doi:10.1016/j.matcom.2008.01.047
[6]Khadra, A.; Liu, X. Z. Z.; Shermanshen, X. M.: Analyzing the robustness of impulsive synchronization coupled by linear delayed impulses, IEEE trans. Autom. control 54, No. 4, 923-928 (2009)
[7]Li, K.; Lai, C. H.: Adaptive – impulsive synchronization of uncertain complex dynamical networks, Phys. lett. A 372, No. 10, 1601-1606 (2008) · Zbl 1217.05210 · doi:10.1016/j.physleta.2007.10.020
[8]Li, Y.; Wong, K. W.; Liao, X. F.: On impulsive control for synchronization and its application to the nuclear spin generator system, Non. anal.: real world appl. 10, No. 3, 1712-1716 (2009) · Zbl 1160.49036 · doi:10.1016/j.nonrwa.2008.02.011
[9]Li, Z.; Chen, G. R.: Robust adaptive synchronization of uncertain dynamical networks, Phys. lett. A 324, No. 2 – 3, 166-178 (2004) · Zbl 1123.93316 · doi:10.1016/j.physleta.2004.02.058
[10]Liu, Z. Y.; Liu, C. J.; Ho, M. C.: Synchronization of uncertain hyperchaotic and chaotic systems by adaptive control, Int. J. Bifurcat. chaos 18, No. 12, 3731-3736 (2008) · Zbl 1165.34371 · doi:10.1142/S0218127408022688
[11]Mcalliister, R.; Uchida, A.; Roy, R.: Generalized synchronization of chaos: experiments on a two-mode microchip laser with optoelectonic feedback, Physica D 195, No. 3 – 4, 244-262 (2004) · Zbl 1056.78519 · doi:10.1016/j.physd.2004.03.017
[12]Namekawa, M.; Satoh, A.; Mori, H.; Yikai, K.; Nakanish, T.: Clock synchronization algorithm for parallel road-traffic simulation system in a wide area, Math. comput. Simul. 48, No. 4 – 6, 351-359 (1999)
[13]Salarieh, H.; Alasty, A.: Adaptive chaos synchronization in Chua’s systems with noisy parameters, Math. comput. Simul. 79, No. 3, 233-241 (2008) · Zbl 1166.34029 · doi:10.1016/j.matcom.2007.11.007
[14]Sudheer, K. S.; Sabir, M.: Adaptive function projective synchronization of two-cell quantum-CNN chaotic oscillators with uncertain parameters, Phys. lett. A 373, No. 21, 1847-1851 (2009) · Zbl 1229.92010 · doi:10.1016/j.physleta.2009.03.052
[15]Sun, J. T.; Zhang, Y. P.: Impulsive control and synchronization of Chua’s oscillators, Math. comput. Simul. 66, No. 6, 499-508 (2004) · Zbl 1113.93088 · doi:10.1016/j.matcom.2004.03.004
[16]Sun, M.; Zeng, C. Y.; Tao, Y. W.: Adaptive – impulsive synchronization in drive-response networks of continuous systems and its application, Phys. lett. A 373, No. 34, 3041-3046 (2009) · Zbl 1233.34019 · doi:10.1016/j.physleta.2009.06.047
[17]Yang, C. H.; Ge, Z. M.; Chang, C. M.; Li, S. Y.: Chaos synchronization and chaos control of quantum-CNN chaotic system by variable structure control and impulse control, Nonlinear anal.:Real world appl. 11, No. 3, 1977-1985 (2010) · Zbl 1188.93022 · doi:10.1016/j.nonrwa.2009.04.019
[18]Yang, M.; Wang, Y. W.; Xiao, J. W.; Wang, H. O.: Robust synchroniztion of impulsively-coupled complex switched networks with parametric uncertainties and time-varying delays, Nonlinear anal.: real world appl. 11, No. 4, 3008-3020 (2010) · Zbl 1214.93055 · doi:10.1016/j.nonrwa.2009.10.021
[19]Yu, D. C.; Parlitz, U.: Partial synchronization of chaotic systems with uncertainty, Phys. rev. E 77, No. 6, 066208 (2008)
[20]Yu, W. W.; Chen, G. R.; Lue, J. H.: On pinning synchronization of complex dynamical networks, Automatica 45, No. 2, 429-435 (2009) · Zbl 1158.93308 · doi:10.1016/j.automatica.2008.07.016