zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the variable order dynamics of the nonlinear wake caused by a sedimenting particle. (English) Zbl 1219.76054
Summary: In this work we develop a variable order (VO) differential equation of motion for a spherical particle sedimenting in a quiescent viscous liquid. In particular, we examine the various force terms in the equation of motion and propose a new form for the history drag acting on the particle. We show that the variable order formulation allows for an effective way to express the dynamic transition of the dominant forces over the entire time of the motion of the particle from rest to terminal velocity. The use of VO operators also allows us to examine the evolving dynamics of the wake during sedimentation. Using numerical data from a finite element simulation of a sedimenting particle, we first solve for the order of the derivative that returns the correct decay of the history force. We then propose a relatively simple expression for the history force that is a function of the Reynolds number and particle-to-fluid density ratio. The new history drag expression correlates very well (R 2 >0·99) with the numerical data for terminal Reynolds numbers ranging from 2.5 to 20, and for particle-to-fluid density ratios of interest in practice (1<β<10).
MSC:
76T20Suspensions
37N10Dynamical systems in fluid mechanics, oceanography and meteorology
References:
[1]Oseen, C. W.: Uber die stokes’sche formel, und uber eine verwandte aufgabe in der hydrodynamik, Hydromechanik 82, 21-29 (1927)
[2]Boussinesq, J.: Sur la résistance qu’oppose un liquide indéfini en repos, sans pesanteur,au mouvement varié d’une sphére solide qu’il mouille sur toute sa surface, quand LES vitesses restent bien continues et assez faibles pour que leurs carrés et produits soient négligeables, C. R. Acad. sci. Paris 100, 935-937 (1885) · Zbl 17.0920.01 · doi:http://gallica.bnf.fr/ark:/12148/bpt6k3056t.f935
[3]Basset, A.: On the motion of a sphere in a viscous liquid, Phil. trans. R. soc. London A 179, 43-63 (1888) · Zbl 20.1003.01 · doi:10.1098/rsta.1888.0003
[4]C.M. Tchen, Mean value and correlation problems connected with the motion of small particles suspended in a turbulent fluid, Ph.D. Thesis, Delft University, 1947.
[5]Coimbra, C. F. M.; Rangel, R. H.: General solution of the particle momentum equation in unsteady Stokes flows, J. fluid mech. 370, 53-72 (1998) · Zbl 0935.76018 · doi:10.1017/S0022112098001967
[6]Coimbra, C. F. M.; Rangel, R. H.: Spherical particle motion in harmonic Stokes flows, AIAA journal 39, 1673-1682 (2001)
[7]Lovalenti, P. M.; Brady, J. F.: The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds number, J. fluid mech. 256, 561-605 (1993) · Zbl 0795.76025 · doi:10.1017/S0022112093002885
[8]Coimbra, C. F. M.; Kobayashi, M. H.: On the viscous motion of a small particle in a rotating cylinder, J. fluid mech. 469, 257-286 (2002) · Zbl 1043.76059 · doi:10.1017/S0022112002001829
[9]Lawrence, C. J.; Mei, R.: Long-time behaviour of the drag on a body in impulsive motion, J. fluid mech. 283, 307-327 (1995) · Zbl 0837.76021 · doi:10.1017/S0022112095002333
[10]Clift, R.; Grace, J.; Weber, M. E.: Bubbles, drops and particles, (1978)
[11]Odar, F.; Hamilton, W. S.: Forces on a sphere acclerating in a viscous fluid, J. fluid mech. 18, 302-314 (1964) · Zbl 0118.21001 · doi:10.1017/S0022112064000210
[12]Michaelides, E. E.: Review–the transient equation of motion for particles, bubbles, and droplets, J. fluids eng. 119, 233-247 (1997)
[13]Mei, R.; Adrian, R. J.: Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds number, J. fluid mech. 237, 323-341 (1992) · Zbl 0747.76038 · doi:10.1017/S0022112092003434
[14]Kim, I.; Elghobashi, S.; Sirignano, W.: On the equation for spherical-particle motion: effect of Reynolds and acceleration numbers, J. fluid mech. 367, 221-253 (1998) · Zbl 0926.76034 · doi:10.1017/S0022112098001657
[15]Coimbra, C. F. M.: Mechanics with variable-order differential operators, Ann. phys. 12, No. 11–12, 692-703 (2003) · Zbl 1103.26301 · doi:10.1002/andp.200310032
[16]Soon, C. M.; Coimbra, C. F. M.; Kobayashi, M. H.: The variable viscoelasticity oscillator, Ann. phys. 14, 378-389 (2005) · Zbl 1125.74316 · doi:10.1002/andp.200410140
[17]Pedro, H. T. C.; Kobayashi, M. H.; Coimbra, C. F. M.: Variable order modelling of diffusive–convective effects on the oscillatory flow past a sphere, J. vib. Control 14, 1659-1672 (2008) · Zbl 1229.76099 · doi:10.1177/1077546307087397
[18]Atkinson, K. E.: The numerical solution of Fredholm integral equations of the second kind, SIAM J. Numer. anal. 4, 337-348 (1967) · Zbl 0155.47404 · doi:10.1137/0704029
[19]Diethelm, K.; Ford, N. J.; Freed, A. D.: Detailed error analysis for a fractional Adams method, Numer. algorithms 36, 31-52 (2004) · Zbl 1055.65098 · doi:10.1023/B:NUMA.0000027736.85078.be