zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analysis of a fuzzy economic order quantity model for deteriorating items under retailer partial trade credit financing in a supply chain. (English) Zbl 1219.90013
Summary: This paper investigates the economic order quantity (EOQ) - based inventory model for a retailer under two levels of trade credit to reflect the supply chain management situation in the fuzzy sense. It is assumed that the retailer maintains a powerful position and can obtain the full trade credit offered by the supplier yet the retailer just offers a partial trade credit to customers. The demand rate, holding cost, ordering cost, purchasing cost and selling price are taken as fuzzy numbers. Under these conditions, the retailer can obtain the most benefits. Study also investigates the retailer’s inventory policy for deteriorating items in a supply chain management situation as a cost minimization problem in the fuzzy sense. The annual total variable cost for the retailer in fuzzy sense is defuzzified using Graded Mean Integration Representation method. Then the present study shows that the defuzzified annual total variable cost for the retailer is convex, that is, a unique solution exists. Mathematical theorems and algorithms are developed to efficiently determine the optimal inventory policy for the retailer. Numerical examples are given to illustrate the theorems and the algorithms. Finally, the results in this paper generalize some already published results in the crisp sense.
MSC:
90B05Inventory, storage, reservoirs
90C70Fuzzy programming
References:
[1]Goyal, S. K.: Economic order quantity under conditions of permissible delay in payments, Journal of the operational research society 36, 335-338 (1985) · Zbl 0568.90025 · doi:10.2307/2582421
[2]Chand, S.; Ward, J.: A note on economic order quantity under conditions of permissible delay in payments, Journal of the operational research society 38, 83-84 (1987) · Zbl 0606.90038 · doi:10.2307/2582525
[3]Chung, K. J.: A theorem on the determination of economic order quantity under conditions of permissible delay in payments, Journal of information optimization sciences 25, 49-52 (1998) · Zbl 0906.90051 · doi:10.1016/S0305-0548(97)00041-5
[4]Shinn, S. W.; Hwang, H. P.; Sung, S.: Joint price and lot size determination under conditions of permissible delay in payments and quantity discounts for freight cost, European journal of operational research 91, 528-542 (1996) · Zbl 0924.90033 · doi:10.1016/0377-2217(94)00357-2
[5]Aggarwal, S. P.; Jaggi, C. K.: Ordering policies of deteriorating items under permissible delay in payments, Journal of the operational research society 46, 658-662 (1995) · Zbl 0830.90032
[6]Shah, N. H.: A lot-size model for exponentially decaying inventory when delay in payments is permissible, Cahiers du CERO 35, 115-123 (1993) · Zbl 0795.90009
[7]Hwang, H.; Shinn, S. W.: Retailer’s pricing and lot sizing policy for exponentially deteriorating product under the condition of permissible delay in payments, Computer and operations research 24, 539-547 (1997) · Zbl 0882.90029 · doi:10.1016/S0305-0548(96)00069-X
[8]Shah, N. H.; Shah, Y. K.: A discrete-in-time probabilistic inventory model for deteriorating items under conditions of permissible delay in payments, International journal of systems science 29, 121-126 (1998) · Zbl 0995.90006 · doi:10.1080/00207729808929575
[9]Jamal, A. M. M.; Sarker, B. R.; Wang, S.: An ordering policy for deteriorating items with allowable shortages and permissible delay in payment, Journal of the operational research society 48, 826-833 (1997) · Zbl 0890.90049
[10]Shawky, A. I.; Abou-El-Ata, M. O.: Constrained production lot-size model with trade-credit policy: a comparison geometric programming approach via Lagrange, Production planning and control 12, 654-659 (2001)
[11]Mahata, G. C.; Goswami, A.: Production lot-size model with fuzzy production rate and fuzzy demand rate for deteriorating item under permissible delay in payments, Opsearch 43, No. 4, 358-375 (2006) · Zbl 1153.90314
[12]Huang, Y. F.: Optimal retailer’s ordering policies in the EOQ model under trade credit financing, Journal of the operational research society 54, 1011-1015 (2003) · Zbl 1097.90501 · doi:10.1057/palgrave.jors.2601588
[13]Chung, K. J.; Goyal, S. K.; Huang, Y. F.: The optimal inventory policies under permissible delay in payments depending on the ordering quantity, International journal of production economics 95, 203-213 (2005)
[14]Chung, K. J.; Liao, J. J.: The optimal ordering policy in a DCF analysis for deteriorating items when trade credit depends on the order quantity, International journal of production economics 100, 116-130 (2006)
[15]Mahata, G. C.; Mahata, Puspita: Optimal retailer’s ordering policies in the EOQ model for deteriorating items under trade credit financing in supply chain, International journal of mathematical, physical and engineering sciences (WASET) 3, No. 1, 1-7 (2009)
[16]Huang, Y. F.: Economic order quantity under conditionally permissible delay in payments, European journal of operational research 176, 911-924 (2007) · Zbl 1103.90017 · doi:10.1016/j.ejor.2005.08.017
[17]Huang, Y. F.: Optimal retailer’s replenishment decisions in the EPQ model under two levels of trade credit policy, European journal of operational research 176, 1577-1591 (2007) · Zbl 1110.90007 · doi:10.1016/j.ejor.2005.10.035
[18]Chang, S. C.; Yao, J. S.; Lee, H. M.: Economic reorder point for fuzzy backorder quantity, European journal of operational research 109, 183-202 (1998) · Zbl 0951.90003 · doi:10.1016/S0377-2217(97)00069-6
[19]Lee, H. M.; Yao, J. S.: Economic production quantity for fuzzy demand quantity and fuzzy production quantity, European journal of operational research 109, 203-211 (1998)
[20]Lin, D. C.; Yao, J. S.: Fuzzy economic production for production inventory, Fuzzy sets and system 111, 465-495 (2000) · Zbl 0993.91024 · doi:10.1016/S0165-0114(98)00037-2
[21]Yao, J. S.; Chang, S. C.; Su, J. S.: Fuzzy inventory without backorder for fuzzy order quantity and fuzzy total demand quantity, Computer and operations research 27, 935-962 (2000) · Zbl 0970.90010 · doi:10.1016/S0305-0548(99)00068-4
[22]Mahata, G. C.; Goswami, A.; Gupta, D. K.: A joint economic-lot-size model for purchaser and vendor in fuzzy sense, Computers and mathematics with applications 50, 1767-1790 (2005) · Zbl 1113.90011 · doi:10.1016/j.camwa.2004.10.050
[23]Ghare, P. M.; Schrader, G. P.: A model for exponentially decaying inventory, Journal of industrial engineering 14, 238-243 (1963)
[24]Covert, R. P.; Philip, G. C.: An EOQ model for items with Weibull distribution deterioration, American industrial engineering transactions 5, 323-326 (1973)
[25]Philip, G. C.: A generalized EOQ model for items with Weibull distribution deterioration, American industrial engineering transactions 6, 159-162 (1974)
[26]Dubois, D.; Prade, H.: A class of fuzzy measures based on triangular norms – a general framework for the combination of uncertain information, International journal gen. Systems 8, 43-61 (1992) · Zbl 0473.94023 · doi:10.1080/03081078208934833
[27]Dubois, D.; Prade, H.: Fuzzy sets and systems: theory and applications, (1980)
[28]Kaufmann, A.; Gupta, M. M.: Introduction to fuzzy arithmetic theory and applications, (1991) · Zbl 0754.26012
[29]Chen, S. H.; Hsieh, C. H.: Graded mean integration representation of generalized fuzzy number, Journal of chinese fuzzy systems 5, No. 2, 1-7 (1999)
[30]Chen, S. H.: Operations on fuzzy numbers with function principle, Tamkang journal of management sciences 6, No. 1, 13-26 (1985) · Zbl 0576.03017
[31]Chen, S. H.: Fuzzy linear combination of fuzzy linear functions under extension principle and second function principle, Tamsui Oxford journal of management sciences 1, 11-31 (1985)