zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Design of a fuzzy sliding-mode synchronization controller for two different chaos systems. (English) Zbl 1219.93042
Summary: This investigation presents a fuzzy sliding-mode technology for synchronizing two chaotic systems. A method of designing a fuzzy sliding-mode control (FSMC) is presented, which utilizes a variable normalization factor. FSMC is designed to guarantee the global asymptotic synchronization of state trajectories of two different chaotic systems. The chaotic systems are numerically simulated to demonstrate the validity and feasibility of the proposed control structure.
MSC:
93B52Feedback control
93D15Stabilization of systems by feedback
34D06Synchronization
37D45Strange attractors, chaotic dynamics
37N35Dynamical systems in control
93B12Variable structure systems
93C42Fuzzy control systems
References:
[1]Chiang, T. Y.; Lin, J. S.; Liao, T. L.; Yan, J. J.: Anti-synchronization of uncertain unified chaotic systems with dead-zone nonlinearity, Nonlinear analysis: theory, methods and applications 68, No. 9, 2629-2637 (2008) · Zbl 1141.34030 · doi:10.1016/j.na.2007.02.009
[2]Bowong, S.: Adaptive synchronization between two different chaotic dynamical systems, Communications in nonlinear science and numerical simulation 12, No. 6, 976-985 (2007) · Zbl 1115.37030 · doi:10.1016/j.cnsns.2005.10.003
[3]Zhang, H.; Xie, Y.; Wang, Z.; Zheng, C.: Adaptive synchronization between two different chaotic neural networks with time delay, IEEE transactions on neural networks 18, No. 6, 1841-1845 (2007)
[4]Zhang, H.; Huang, W.; Wang, Z.; Chai, T.: Adaptive synchronization between two different chaotic systems with unknown parameters, Physics letters A 350, 363-366 (2006) · Zbl 1195.93121 · doi:10.1016/j.physleta.2005.10.033
[5]Park, J. H.: Adaptive synchronization of Rössler system with uncertain parameters, Chaos, solitons and fractals 25, 333-338 (2005) · Zbl 1125.93470 · doi:10.1016/j.chaos.2004.12.007
[6]Hosseinnia, S. H.; Ghaderi, R.; Ranjbar, N. A.; Mahmoudian, M.; Momani, S.: Sliding mode synchronization of an uncertain factional order chaotic system, Computers and mathematics with applications 59, No. 5, 1637-1643 (2010) · Zbl 1189.34011 · doi:10.1016/j.camwa.2009.08.021
[7]Kuo, C. L.; Wang, C. C.; Pai, N. S.: Design of variable structure controller for two different hyperchaotic systems containing nonlinear inputs, Journal of applied sciences 9, No. 14, 2635-2639 (2009)
[8]Almeida, D. I. R.; Alvarez, J.; Barajas, J. G.: Robust synchronization of sprott circuits using sliding mode control, Chaos, solitons and fractals 30, 11-18 (2006) · Zbl 1220.37081 · doi:10.1016/j.chaos.2005.09.011
[9]Jang, M. J.; Chen, C. L.; Chen, C. K.: Sliding mode control of hyperchaos in Rössler systems, Chaos, solitons and fractals 14, 1465-1476 (2002) · Zbl 1037.93507 · doi:10.1016/S0960-0779(02)00084-X
[10]Kuo, C. L.: Design of an adaptive fuzzy sliding-mode controller for chaos synchronization, International journal of nonlinear sciences and numerical simulation 8, No. 4, 631-636 (2007)
[11]Yau, H. T.; Kuo, C. L.; Yan, J. J.: Fuzzy sliding mode control for a class of chaos synchronization with uncertainties, International journal of nonlinear sciences and numerical simulation 7, No. 2, 333-338 (2006)
[12]Yau, H. T.: Chaos synchronization of two uncertain chaotic nonlinear gyros using fuzzy sliding mode control, Mechanical systems and signal processing 22, 408-418 (2008)
[13]Kim, J. H.; Park, C. W.; Kim, E.; Park, M.: Adaptive snchronization of T–S fuzzy chaotic systems with unknown parameters, Chaos, solitons and fractals 24, 1353-1361 (2005) · Zbl 1092.37512 · doi:10.1016/j.chaos.2004.09.082