zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Passivity-based control for bilateral teleoperation: a tutorial. (English) Zbl 1219.93081
Summary: This tutorial revisits several of the most recent passivity-based controllers for nonlinear bilateral teleoperators with guaranteed stability properties. These schemes, which include scattering-based, damping injection and adaptive controllers, ensure asymptotic stability in multiple situations that range from constant to variable time-delays, with or without scattering transformation and with or without position tracking capabilities. Although all controllers exploit the basic property of passivity of the teleoperators, they have been developed invoking various analysis and design tools, which complicates their comparison and relative performance assessment. The objective of this paper is to present a unified theoretical framework – based on a general Lyapunov-like function – that, upon slight modification, allows to analyze the stability of all the schemes.
MSC:
93C85Automated control systems (robots, etc.)
93B35Sensitivity (robustness) of control systems
34H05ODE in connection with control problems
93D30Scalar and vector Lyapunov functions
93C10Nonlinear control systems
References:
[1]Anderson, R. J.; Spong, M. W.: Bilateral control of teleoperators with time delay, IEEE transactions on automatic control 34, No. 5, 494-501 (1989)
[2]Anderson, R. J.; Spong, M. W.: Asymptotic stability for force reflecting teleoperators with time delay, International journal of robotics research 11, No. 2, 135-149 (1992)
[3]Arcara, P.; Melchiorri, C.: Control schemes for teleoperation with time delay: a comparative study, Robotics and autonomous systems 38, No. 1, 49-64 (2002) · Zbl 1017.68130 · doi:10.1016/S0921-8890(01)00164-6
[4]Arcara, P., & Melchiorri, C. (2004). Advances in control of articulated and mobile robots. Comparison and improvement of control schemes for robotic teleoperation systems with time delay (pp. 39–60) (Chapter).
[5]Aziminejad, A.; Tavakoli, M.; Patel, R. V.; Moallem, M.: Stability and performance in delayed bilateral teleoperation: theory and experiments, Control engineering practice 16, No. 11, 1329-1343 (2008)
[6]Azorín, J. M.; Reinoso, O.; Aracil, R.; Ferre, M.: Generalized control method by state convergence for teleoperation systems with time delay, Automatica 40, No. 9, 1575-1582 (2004) · Zbl 1055.93529 · doi:10.1016/j.automatica.2004.04.001
[7]Berestesky, P., Chopra, N., & Spong, M. W. (2004). Theory and experiments in bilateral teleoperation over the internet. In Proc. IEEE conf. on contr. applications (pp. 456–463).
[8]Chopra, N.; Berestesky, P.; Spong, M. W.: Bilateral teleoperation over unreliable communication networks, IEEE transactions on control systems technology 16, No. 2, 304-313 (2008)
[9]Chopra, N., & Spong, M. W. (2005). On synchronization of networked passive systems with time delays and application to bilateral teleoperation. In Proc. IEEE/SICE int. conf. instrumentation, control and information technology.
[10]Chopra, N., & Spong, M. W. (2006). Output synchronization of nonlinear systems with time delay in communication. In Proc. IEEE conf. decision and control (pp. 4986–4992).
[11]Chopra, N.; Spong, M. W.: Passivity-based control of multi-agent systems, , 107-134 (2007) · Zbl 1134.93308
[12]Chopra, N.; Spong, M. W.: Adaptive synchronization of bilateral teleoperators with time delay, , 257-270 (2007)
[13]Chopra, N., & Spong, M. W. (2007c). Delay independent stability for interconnected nonlinear systems with finite L2 gain. In Proc. IEEE conf. decision and control (pp. 3847–3852).
[14]Chopra, N., Spong, M. W., Hirche, S., & Buss, M. (2003), Bilateral teleoperation over the internet: the time varying delay problem. In Proc. American contr. conf (pp. 155–160).
[15]Chopra, N., Spong, M. W., & Lozano, R. (2004). Adaptive coordination control of bilateral teleoperators with time-delay. In Proc. IEEE conf. decision and control (pp. 4540–4547).
[16]Chopra, N.; Spong, M. W.; Lozano, R.: Synchronization of bilateral teleoperators with time delay, Automatica 44, No. 8, 2142-2148 (2008)
[17]Chopra, N.; Spong, M. W.; Ortega, R.; Barabanov, N. E.: Position and force tracking in bilateral teleoperation, , 269-280 (2004)
[18]Chopra, N.; Spong, M. W.; Ortega, R.; Barabanov, N. E.: On tracking preformance in bilateral teleoperation, IEEE transactions on robotics and automation 22, No. 4, 844-847 (2006)
[19]De Rinaldis, A.; Ortega, R.; Spong, M. W.: A compensator for attenuation of wave reflections in long cable actuator-plant interconnections with guaranteed stability, Automatica 42, No. 10, 1621-1635 (2006) · Zbl 1114.93059 · doi:10.1016/j.automatica.2006.05.011
[20], Modeling and control of complex physical systems: the port-Hamiltonian approach (2009)
[21]Fantuzzi, C.; Secchi, C.; Stramigioli, S.: Transparency in port-Hamiltonian-based telemanipulation, IEEE transactions on robotics and automation 24, No. 4, 903-910 (2008)
[22]Ghorbel, F.; Srinivasan, B.; Spong, M. W.: On the uniform boundedness of the inertia matrix of serial robot manipulators, Journal of robotic systems 15, No. 1, 17-28 (1998) · Zbl 0902.70004 · doi:10.1002/(SICI)1097-4563(199812)15:1<17::AID-ROB2>3.0.CO;2-V
[23]Hastrudi-Zaad, K.; Salcudean, S. E.: Analysis of control architectures for teleoperation systems with impedance/admitance master and slave manipulators, International journal of robotics research 20, No. 6, 419-445 (2001)
[24]Hirche, S., & Buss, M. (2004). Packet loss effects in passive telepresence systems. In Proc. IEEE conf. decision and control (pp. 4010–4015).
[25]Hokayem, P. F.; Spong, M. W.: Bilateral teleoperation: an historical survey, Automatica 42, No. 12, 2035-2057 (2006) · Zbl 1104.93009 · doi:10.1016/j.automatica.2006.06.027
[26]Hung, N. V. Q.; Narikiyo, T.; Tuan, H. D.: Nonlinear adaptive control of master-slave system in teleoperation, Control engineering practice 11, 1-10 (2003)
[27]Kelly, R.; Santibáñez, V.; Loria, A.: Control of robot manipulators in joint space, (2005)
[28]Lee, S.; Lee, H. S.: Modeling, design, and evaluation of advanced teleoperator control systems with short time-delay, IEEE transactions on robotics and automation 9, No. 5, 607-623 (1993)
[29]Lee, D.; Spong, M. W.: Passive bilateral teleoperation with constant time delay, IEEE transactions on robotics and automation 22, No. 2, 269-281 (2006)
[30]Love, L. J.; Book, W. J.: Force reflecting teleoperation with adaptive impedance control, IEEE transactions on systems, man and cybernetics, part B (Cybernetics) 34, No. 1, 159-165 (2004)
[31]Lozano, R., Chopra, N., & Spong, M. W. (2002). Passivation of force reflecting bilateral teleoperators with time varying delay. In Proc. mechatronics conference. Enstschede, Netherlands.
[32]Matiakis, T., Hirche, S., & Buss, M. (2006). Independent of delay stability of nonlinear networked control systems by scattering transformation. In Proc. American control conference (pp. 2801–2806).
[33]Michels, W.; Van Assche, V.; Niculescu, S. -I.: Stabilization of time-delay systems with a controlled time-varying delay and applications, IEEE transactions on automatic control 50, No. 4, 493-504 (2005)
[34]Munir, S.; Book, W. J.: Internet-based teleoperation using wave variables with prediction, IEEE/ASME transactions on mechatronics 7, No. 2, 124-133 (2002)
[35]Namerikawa, T., & Kawada, H. (2006). Symmetric impedance matched teleoperation with position tracking. In IEEE conference on decision and controlc (pp. 4496–4501).
[36]Niemeyer, G. (1996). Using wave variables in time delayed force reflecting teleoperation. Ph.D. thesis. Massachusetts Institute of Technology.
[37]Niemeyer, G.; Slotine, J. J.: Stable adaptive teleoperation, IEEE journal of oceanic engineering 16, No. 1, 152-162 (1991)
[38]Niemeyer, G.; Slotine, J. J.: Telemanipulation with time delays, International journal of robotics research 23, No. 9, 873-890 (2004)
[39]Nuño, E., Basañez, L., & Ortega, R. (2007). Passive bilateral teleoperation framework for assisted robotic tasks. In IEEE int. conf. robot. aut. (pp. 1645–1650).
[40]Nuño, E.; Basañez, L.; Ortega, R.: Control of teleoperators with time-delay: a Lyapunov approach, , 371-381 (2009)
[41]Nuño, E., Basañez, L., Ortega, R., & Spong, M. W. (2008). On the asymptotic zero-convergence of position error for teleoperated robots with variable time-delay. In Proc. workshop. new vistas and challenges in telerobotics. IEEE int. conf. robot. autom..
[42]Nuño, E.; Basañez, L.; Ortega, R.; Spong, M. W.: Position tracking for nonlinear teleoperators with variable time-delay, International journal of robotics research 28, No. 7, 895-910 (2009)
[43]Nuño, E., Basañez, L., & Prada, M. (2009). Asymptotic stability of teleoperators with variable time-delays. In Proceedings-IEEE international conference on robotics and automationnt (pp. 4332–4337).
[44]Nuño, E.; Ortega, R.; Barabanov, N.; Basañez, L.: A globally stable PD controller for bilateral teleoperators, IEEE transactions on robotics 24, No. 3, 753-758 (2008)
[45]Nuño, E.; Ortega, R.; Basañez, L.: An adaptive controller for nonlinear bilateral teleoperators, Automatica 46, No. 1, 155-159 (2010) · Zbl 1214.93059 · doi:10.1016/j.automatica.2009.10.026
[46]Nuño, E., Ortega, R., & Basañez, L. (2011). Correction to ”An adaptive controller for nonlinear bilateral teleoperators” [Automatica 46 (2010), 155–159]. Automatica. doi:10.1016/j.automatica.2011.01.044.
[47]Nuño, E., Ortega, R., Basañez, L., & Barabanov, N. (2008). A new proportional controller for nonlinear bilateral teleoperators. In Proc. IFAC world congress (pp. 15660–15665).
[48]Ortega, R., Chopra, N., & Spong, M. W. (2003). A new passivity formulation for bilateral teleoperation with time delays. In Proc. CNRS–NSF workshop: advances in time-delay systems. La Defense, Paris.
[49]Ortega, R.; De Rinaldis, A.; Spong, M. W.; Lee, S.; Nam, K.: On compensation of wave reflections in transmission lines and applications to the overvoltage problem ac motor drives, IEEE transactions on automatic control 49, No. 10, 1757-1762 (2004)
[50]Ortega, R.; Spong, M. W.: Adaptive motion control of rigid robots: a tutorial, Automatica 25, No. 6, 877-888 (1989) · Zbl 0695.93064 · doi:10.1016/0005-1098(89)90054-X
[51]Polushin, I. G.; Liu, P. X.; Lung, C. -H.: A control scheme for stable force-reflecting teleoperation over IP networks, IEEE transactions on systems, man and cybernetics, part B (Cybernetics) 36, No. 4, 930-939 (2006)
[52]Polushin, I. G.; Liu, P. X.; Lung, C. -H.: A force-reflection algorithm for improved transparency in bilateral teleoperation with communication delay, IEEE/ASME transactions on mechatronics 12, No. 3, 361-374 (2007)
[53]Polushin, I. G.; Marquez, H. J.: Stabilization of bilaterally controlled teleoperators with communication delay: an iss approach, International journal of control 76, No. 8, 858-870 (2003) · Zbl 1047.93545 · doi:10.1080/0020717031000116515
[54]Polushin, I. G.; Marquez, H. J.; Tayebi, A.; Liu, P. X.: A multichannel IOS small gain theorem for systems with multiple time-varying communication delays, IEEE transactions on automatic control 54, No. 2, 404-409 (2009)
[55]Polushin, I. G.; Tayebi, A.; Marquez, H. J.: Control schemes for stable teleoperation with communication delay based on ios small gain theorem, Automatica 42, No. 6, 905-915 (2006) · Zbl 1117.93353 · doi:10.1016/j.automatica.2006.02.020
[56]Rodriguez-Angeles, A.; Nijmeijer, H.: Mutual synchronization of robots via estimated state feedback: a cooperative approach, IEEE transactions on control systems technology 12, No. 4, 542-554 (2004)
[57]Secchi, C.; Stramigioli, S.; Fantuzzi, C.: Power scaling in port-Hamiltonian telemanipulation over packet switched networks, , 233-256 (2007)
[58]Secchi, C.; Stramigioli, S.; Fantuzzi, C.: Variable delay in scaled port-Hamiltonian telemanipulation, Mechatronics 18, No. 7, 357-363 (2008)
[59]Slotine, J. J.; Li, W.: Adaptive manipulator control: a case of study, IEEE transactions on automatic control 33, No. 11, 995-1003 (1988) · Zbl 0664.93045 · doi:10.1109/9.14411
[60]Spong, M. W.; Hutchinson, S.; Vidyasagar, M.: Robot modeling and control, (2005)
[61]Stramigioli, S.; Van Der Schaft, A.; Maschke, B.; Melchiorri, C.: Geometric scattering in robotic telemanipulation, IEEE transactions on robotics and automation 18, No. 4, 588-596 (2002)
[62]Takegaki, M.; Arimoto, S.: A new feedback method for dynamic control of manipulators, ASME journal of dynamic systems, measurement, and control 102, 119-125 (1981) · Zbl 0473.93012 · doi:10.1115/1.3139651
[63]Tanner, N. A.; Niemeyer, G.: Improving perception in time-delayed telerobotics, International journal of robotics research 24, No. 8, 631-644 (2005)
[64]Taoutaou, D., Niculescu, S. -I., & Gu, K. (2003). Robust stability of teleoperation schemes subject to constant and time-varying communication delays. In Proc. IEEE conf. desicion and control (pp. 5579–5584).
[65]Van Der Schaft, A. J.: Balancing of lossless and passive systems, IEEE transactions on automatic control 53, No. 9, 2153-2157 (2008)
[66]Wang, W.; Slotine, J. J.: Contraction analysis of time-delayed communications and group cooperation, IEEE transactions on automatic control 51, No. 4, 712-717 (2006)
[67]Zhu, W. H.; Salcudean, S. E.: Stability guaranteed teleoperation: an adaptive motion/force control approach, IEEE transactions on automatic control 45, No. 11, 1951-1969 (2000) · Zbl 0991.93062 · doi:10.1109/9.887620