zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Delay-dependent BIBO stability analysis of switched uncertain neutral systems. (English) Zbl 1219.93113
Summary: This paper presents the analysis of delay-dependent bounded input bounded output (BIBO) stability for a class of switched uncertain neutral systems. The uncertainty is assumed to be of structured linear fractional form which includes the norm-bounded uncertainty as a special case. First, by introducing the general variation-of-constants formula of neutral systems with perturbation, the BIBO stability property of general linear switched neutral systems with perturbation is established. Next, combining the general variation-of-constants formula with the state-dependent switching rule, new approaches are presented to design the feedback controller and the switching rules. Furthermore, the BIBO stability criteria are obtained in terms of the so-called Lyapunov-Metzler linear matrix inequalities (LMIs). Finally, simulation examples are given to demonstrate the effectiveness and the potential of the proposed techniques.
MSC:
93D25Input-output approaches to stability of control systems
93D15Stabilization of systems by feedback
34K20Stability theory of functional-differential equations
92E20Classical flows, reactions, etc.
93C30Control systems governed by other functional relations
References:
[1]Sun, Z.; Ge, S. -S.: Analysis and synthesis of switched linear control systems, Automatica 41, 181-195 (2005) · Zbl 1074.93025 · doi:10.1016/j.automatica.2004.09.015
[2]Sun, Z. -D.: Stabilizability and insensitivity of switched linear systems, IEEE transactions on automatic control 49, 1133-1137 (2004)
[3]Kim, S.; Campbell, S. -A.; Liu, X.: Stability of a class of linear switching systems with time delay, IEEE transactions on circuits and systems I 53, 384-393 (2006)
[4]Du, D. -S.; Jiang, B.; Shi, P.; Zhou, S. -S.: Robust l2–l control for uncertain discrete-time switched systems with delays, Circuits, systems, and signal processing 25, 729-744 (2006) · Zbl 1112.93046 · doi:10.1007/s00034-005-1102-4
[5]Hu, K.; Yuan, J.: Improved robust H filtering for uncertain discrete-time switched systems, IET control theory applications 3, 315-324 (2009)
[6]Sun, X. -M.; Zhao, J.; Hill, D. J.: Stability and L2-gain analysis for switched delay systems: A delay-dependent method, Automatica 42, 1769-1774 (2006) · Zbl 1114.93086 · doi:10.1016/j.automatica.2006.05.007
[7]Liberzon, D.: Switching in systems and control, (2003)
[8]Zhai, G. -S.; Xu, X. -P.; Lin, H.; Michel, A. N.: Analysis and design of switched normal systems, Nonlinear analysis: theory, methods applications 65, 2248-2259 (2006)
[9]Li, R.; Teo, K. L.; Wong, K. H.; Duan, G. R.: Control parameterization enhancing transform for optimal control of switched systems, Mathematical and computer modelling 43, 1393-1403 (2006) · Zbl 1139.49030 · doi:10.1016/j.mcm.2005.08.012
[10]Mohamad, S. Alwan; Liu, X. -Z.: On stability of linear and weakly nonlinear switched systems with time delay, Mathematical and computer modelling 48, 1150-1157 (2008) · Zbl 1187.34067 · doi:10.1016/j.mcm.2007.12.024
[11]Liu, Y. -B.; Feng, W. -Z.: Razumikhin–Lyapunov functional method for the stability of impulsive switched systems with time delay, Mathematical and computer modelling 49, 249-264 (2009) · Zbl 1165.34411 · doi:10.1016/j.mcm.2008.01.004
[12]Xu, H. -L.; Liu, X. -Z; Teo, K. L.: Robust H stabilization with definite attendance of uncertain impulsive switched systems, Journal of ANZIAM 46, 471-484 (2005) · Zbl 1123.93073 · doi:10.1017/S1446181100009627
[13]Xu, H. -L.; Teo, K. L.: Robust stabilization of uncertain impulsive switched systems with delayed control, Computers mathematics with applications 56, 63-70 (2008) · Zbl 1145.93411 · doi:10.1016/j.camwa.2007.11.032
[14]Xu, H. -L.; Teo, K. L.; Liu, X.: Robust stability analysis of guaranteed cost control for impulsive switched systems, IEEE transactions on systems, man, and cybernetics, part B (Cybernetics) 38, 1419-1422 (2008)
[15]Xu, H. -L.; Teo, K. L.: H optimal stabilization of a class of uncertain impulsive systems: an LMI approach, Journal of industrial and management optimization 5, 153-159 (2009) · Zbl 1158.93343 · doi:10.3934/jimo.2009.5.153
[16]Xu, H. -L.; Liu, X. -Z.; Teo, K. -L.: Delay independent stability criteria of impulsive switched systems with time-invariant delays, Mathematical and computer modelling 47, 372-379 (2008) · Zbl 1136.93037 · doi:10.1016/j.mcm.2007.04.011
[17]Lin, H.; Antsaklis, P. -J.: Stability and stabilizability of switched linear systems: a survey of recent results, IEEE transactions on automatic control 54, 308-322 (2009)
[18]Wu, H.; Mizukami, K.: Robust stabilization of uncertain linear dynamical systems, International journal of systems science 24, 265-276 (1993) · Zbl 0781.93074 · doi:10.1080/00207729308949487
[19]Xu, D. -Y.; Zhong, S. -M.; Li, M.: BIBO stabilization of large-scale systems, Control theory and applications 12, 758-763 (1995)
[20]Xu, D. -Y.; Zhong, S. -M.: Robust BIBO stabilization of linear large-scale systems with nonlinear delay perturbations, dynamics of continuous, Discrete and impulsive systems 2, 511-520 (1996) · Zbl 0876.93079
[21]Fu, Y. -L.; Liao, X. -X.: BIBO stabilization of stochastic delay systems with uncertainty, IEEE transactions on automatic control 48, 133-138 (2003)
[22]Li, P.; Zhong, S. -M.: BIBO stabilization of time-delayed system with nonlinear perturbation, Applied mathematics and computation 195, 264-269 (2008) · Zbl 1130.93046 · doi:10.1016/j.amc.2007.04.081
[23]Li, P.; Zhong, S. -M.: BIBO stabilization for system with multiple mixed delays and nonlinear perturbations, Applied mathematics and computation 196, 207-213 (2008)
[24]Li, P.; Zhong, S. -M.: BIBO stabilization of piecewise switched linear systems with delays and nonlinear perturbations, Applied mathematics and computation 213, 405-410 (2009) · Zbl 1165.93338 · doi:10.1016/j.amc.2009.03.029
[25]Li, P.; Zhong, S. -M.; Cui, J. -Z.: Stability analysis of linear switching systems with time delays, Chaos, solitons fractals 40, 474-480 (2009) · Zbl 1197.34138 · doi:10.1016/j.chaos.2007.07.087
[26]Han, Q. -L.: A descriptor system approach to robust stability of uncertain neutral systems with discrete and distributed delays, Automatica 40, 1791-1796 (2004) · Zbl 1075.93032 · doi:10.1016/j.automatica.2004.05.002
[27]Xiong, L. -L.; Zhong, S. -M.; Tian, J. -K.: Novel robust stability criteria of uncertain neutral systems with discrete and distributed delays, Chaos, solitons fractals 40, 771-777 (2009) · Zbl 1197.93132 · doi:10.1016/j.chaos.2007.08.023
[28]Sun, X. -M.; Fu, J.; Sun, H. -F.; Zhao, J.: Stability of linear switched neutral delay systems, Proceedings of the chinese society for electrical engineering 25, 42-46 (2005)
[29]Zhang, Y.; Liu, X.; Zhu, H.: Stability analysis and control synthesis for a class of switched neutral systems, Applied mathematics and computation 190, 1258-1266 (2007) · Zbl 1117.93062 · doi:10.1016/j.amc.2007.02.011
[30]Liu, D. -Y.; Liu, X. -Z.; Zhong, S. -M.: Delay-dependent robust stability and control synthesis for uncertain switched neutral systems with mixed delays, Applied mathematics and computation 205, 828-839 (2008) · Zbl 1143.93020 · doi:10.1016/j.amc.2008.03.028
[31]Geromel, J. -C.; Colaneri, P.: Stability and stabilization of continuous-time switched linear systems, SIAM journal on control and optimization 45, 1915-1930 (2006) · Zbl 1130.34030 · doi:10.1137/050646366
[32]Michaletzky, Gyorgy; Gerencser, Laszlo: BIBO stability of linear switching systems, IEEE transactions on automatic control 47, 1895-1898 (2002)
[33]Partington, Jonathan R.; Bonnet, Catherine: H and BIBO stabilization of delay systems of neutral type, Systems control letters 52, 283-288 (2004) · Zbl 1157.93367 · doi:10.1016/j.sysconle.2003.09.014
[34]Du, D. -S.; Jiang, B.; Shi, P.; Zhou, S. -S.: Robust l2–l control for uncertain discrete-time switched systems with delays, Circuits, systems, and signal processing 25, No. June, 729-744 (2006) · Zbl 1112.93046 · doi:10.1007/s00034-005-1102-4
[35]Zhou, S. -S.; Lam, J.: Robust stabilization of delayed singular systems with linear fractional parametric uncertainties, Circuits, systems and signal processing 22, 579-588 (2003) · Zbl 1045.93042 · doi:10.1007/s00034-003-1218-x
[36]Hale, J. -K.: Theory of functional differential equations, (1977)
[37]Rockafellar, R.: Convex analysis, (1970) · Zbl 0193.18401
[38]Garg, K. -M.: Theory of differentiation: A unified theory of differentiation via new derivate theorems and new derivatives, (1998)
[39]Lasdon, L. -S.: Optimization theory for large scale systems, Series of operation research (1970) · Zbl 0224.90038
[40]K. Gu, An integral inequality in the stability problem of time-delay systems, in: Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, Australia, December 2000, pp. 2805–2810.
[41]Moon, Y. -S.; Park, P.; Kwon, W. -H.; Lee, Y. -S.: Delay-dependent robust stabilization of uncertain state-delayed systems, International journal of control 74, 1447-1455 (2001) · Zbl 1023.93055 · doi:10.1080/00207170110067116