zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence of three solutions for a non-homogeneous Neumann problem through Orlicz-Sobolev spaces. (English) Zbl 1220.35043
Summary: The aim of this paper is to establish a multiplicity result for an eigenvalue non-homogeneous Neumann problem which involves a nonlinearity fulfilling a nonstandard growth condition. Precisely, a recent critical points result for differentiable functionals is exploited in order to prove the existence of a determined open interval of positive eigenvalues for which the problem admits at least three weak solutions in an appropriate Orlicz-Sobolev space.
35J60Nonlinear elliptic equations
58E05Abstract critical point theory
35D30Weak solutions of PDE
35J70Degenerate elliptic equations
46N20Applications of functional analysis to differential and integral equations
58J05Elliptic equations on manifolds, general theory
[1]Zhikov, V.: Averaging of functionals of the calculus of variations and elasticity theory, Math. USSR izv. 29, 33-66 (1987) · Zbl 0599.49031 · doi:10.1070/IM1987v029n01ABEH000958
[2]Halsey, T. C.: Electrorheological fluids, Science 258, 761-766 (1992)
[3]Rajagopal, K. R.; Ružička, M.: Mathematical modelling of electrorheological fluids, Continuum mech. Therm. 13, 59-78 (2001) · Zbl 0971.76100 · doi:10.1007/s001610100034
[4]Ružička, M.: Electrorheological fluids modeling and mathematical theory, (2002)
[5]Acerbi, E.; Mingione, G.: Regularity results for a class of functionals with nonstandard growth, Arch. ration. Mech. anal. 156, 121-140 (2001) · Zbl 0984.49020 · doi:10.1007/s002050100117
[6]Duzaar, F.; Mingione, G.: Harmonic type approximation lemmas, J. math. Anal. appl. 352, 301-335 (2009) · Zbl 1172.35002 · doi:10.1016/j.jmaa.2008.09.076
[7]Mihăilescu, M.; Rădulescu, V.: On a nonhomogeneous quasilinear eigenvalue problem in Sobolev spaces with variable exponent, Proc. amer. Math. soc. 135, 2929-2937 (2007) · Zbl 1146.35067 · doi:10.1090/S0002-9939-07-08815-6
[8]Mihăilescu, M.; Rădulescu, V.: Neumann problems associated to nonhomogeneous differential operators in Orlicz–Sobolev spaces, Ann. inst. Fourier 58, 2087-2111 (2008) · Zbl 1186.35065 · doi:10.5802/aif.2407 · doi:numdam:AIF_2008__58_6_2087_0
[9]Chen, Y.; Levine, S.; Rao, M.: Variable exponent, linear growth functionals in image processing, SIAM J. Appl. math. 66, 1383-1406 (2006) · Zbl 1102.49010 · doi:10.1137/050624522
[10]Nakano, H.: Modulared semi-ordered linear spaces, (1950) · Zbl 0041.23401
[11]Musielak, J.; Orlicz, W.: On modular spaces, Studia math. 18, 49-65 (1959) · Zbl 0086.08901
[12]G. Dankert, Sobolev embedding theorems in Orlicz spaces, Ph.D. Thesis, University of Köln, 1966.
[13]Donaldson, T. K.; Trudinger, N. S.: Orlicz–Sobolev spaces and imbedding theorems, J. funct. Anal. 8, 52-75 (1971) · Zbl 0216.15702 · doi:10.1016/0022-1236(71)90018-8
[14]O’neill, R.: Fractional integration in Orlicz spaces, Trans. amer. Math. soc. 115, 300-328 (1965)
[15]Adams, R. A.: Sobolev spaces, (1975)
[16]Donaldson, T. K.: Nonlinear elliptic boundary value problems in Orlicz–Sobolev spaces, J. differential equations 10, 507-528 (1971) · Zbl 0218.35028 · doi:10.1016/0022-0396(71)90009-X
[17]Gossez, J. P.: Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. amer. Math. soc. 190, 163-205 (1974) · Zbl 0239.35045 · doi:10.2307/1996957
[18]Gossez, J. P.: A strongly nonlinear elliptic problem in Orlicz–Sobolev spaces, Proceedings of symposia in pure mathematics 45, 455-462 (1986) · Zbl 0602.35037
[19]Clément, Ph.; García-Huidobro, M.; Manásevich, R.; Schmitt, K.: Mountain pass type solutions for quasilinear elliptic equations, Calc. var. 11, 33-62 (2000) · Zbl 0959.35057 · doi:10.1007/s005260000025
[20]Clément, Ph.; De Pagter, B.; Sweers, G.; De Thélin, F.: Existence of solutions to a semilinear elliptic system through Orlicz–Sobolev spaces, Mediterr. J. Math. 1, 241-267 (2004) · Zbl 1167.35352 · doi:10.1007/s00009-004-0014-6
[21]García-Huidobro, M.; Le, V. K.; Manásevich, R.; Schmitt, K.: On principal eigenvalues for quasilinear elliptic differential operators: an Orlicz–Sobolev space setting, Nodea nonlinear differential equations appl. 6, 207-225 (1999) · Zbl 0936.35067 · doi:10.1007/s000300050073
[22]Gossez, J. P.; Manásevich, R.: On a nonlinear eigenvalue problem in Orlicz–Sobolev spaces, Proc. roy. Soc. Edinburgh sect. A 132, 891-909 (2002) · Zbl 1014.35071 · doi:10.1017/S030821050000192X
[23]Le, V. K.; Schmitt, K.: Quasilinear elliptic equations and inequalities with rapidly growing coefficients, J. lond. Math. soc. 62, 852-872 (2000) · Zbl 1013.35032 · doi:10.1112/S0024610700001423
[24]Mihăilescu, M.; Rădulescu, V.: A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. lond. Ser. A math. Phys. eng. Sci. 462, 2625-2641 (2006) · Zbl 1149.76692 · doi:10.1098/rspa.2005.1633
[25]Mihăilescu, M.; Rădulescu, V.: Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: an Orlicz–Sobolev space setting, J. math. Anal. appl. 330, 416-432 (2007) · Zbl 1176.35071 · doi:10.1016/j.jmaa.2006.07.082
[26]Halidias, N.; Le, V. K.: Multiple solutions for quasilinear elliptic Neumann problems in Orlicz–Sobolev spaces, Bound. value probl. 3, 299-306 (2005) · Zbl 1173.35473 · doi:10.1155/BVP.2005.299
[27]Kristály, A.; Mihăilescu, M.; Rădulescu, V.: Two non-trivial solutions for a non-homogeneous Neumann problem: an Orlicz–Sobolev space setting, Proc. roy. Soc. Edinburgh sect. A 139, No. 2, 367-379 (2009) · Zbl 1172.35026 · doi:10.1017/S030821050700025X
[28]Ricceri, B.: On a three critical points theorem, Arch. math. (Basel) 75, 220-226 (2000) · Zbl 0979.35040 · doi:10.1007/s000130050496
[29]Ricceri, B.: A general variational principle and some of its applications, J. comput. Appl. math. 113, 401-410 (2000) · Zbl 0946.49001 · doi:10.1016/S0377-0427(99)00269-1
[30]Ricceri, B.: A multiplicity theorem for the Neumann problem, Proc. amer. Math. soc. 134, 1117-1124 (2006) · Zbl 1134.35345 · doi:10.1090/S0002-9939-05-08113-X
[31]Averna, D.; Bonanno, G.: Three solutions for a Neumann boundary value problem involving the p-Laplacian, Matematiche 60, 81-91 (2005) · Zbl 1117.35023
[32]Bonanno, G.: Multiple solutions for a Neumann boundary value problem, J. nonlinear convex anal. 4, 287-290 (2003) · Zbl 1042.34034
[33]Bonanno, G.: Some remarks on a three critical points theorem, Nonlinear anal. 54, 651-665 (2003) · Zbl 1031.49006 · doi:10.1016/S0362-546X(03)00092-0
[34]Bonanno, G.; Candito, P.: Three solutions to a Neumann problem for elliptic equations involving the p-Laplacian, Arch. math. (Basel) 80, 424-429 (2003) · Zbl 1161.35382 · doi:10.1007/s00013-003-0479-8
[35]El Manouni, S.; Alaoui, M. Kbiri: A result on elliptic systems with Neumann conditions via ricceri’s three critical points theorem, Nonlinear anal. 71, 2343-2348 (2009) · Zbl 1170.35387 · doi:10.1016/j.na.2009.01.068
[36]Faraci, F.: Multiplicity results for a Neumann problem involving the p-Laplacian, J. math. Anal. appl. 277, 180-189 (2003) · Zbl 1092.35033 · doi:10.1016/S0022-247X(02)00530-9
[37]Bonanno, G.; Marano, S. A.: On the structure of the critical set of non-differentiable functions with a weak compactness condition, Appl. anal. 89, 1-10 (2010) · Zbl 1194.58008 · doi:10.1080/00036810903397438
[38]Bonanno, G.; Candito, P.: Non-differentiable functionals and applications to elliptic problems with discontinuous nonlinearities, J. differential equations 244, 3031-3059 (2008) · Zbl 1149.49007 · doi:10.1016/j.jde.2008.02.025