zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Common fixed points of four maps in partially ordered metric spaces. (English) Zbl 1220.54018
Summary: In this paper, common fixed points of four mappings satisfying a generalized weak contractive condition in the framework of partially ordered metric spaces are obtained. We also provide examples of the new concepts introduced herein.
MSC:
54H25Fixed-point and coincidence theorems in topological spaces
References:
[1]Alber, Ya.I.; Guerre-Delabrere, S.: Principle of weakly contractive maps in Hilbert spaces, Advances and appl. 98, 7-22 (1997) · Zbl 0897.47044
[2]Rhoades, B. E.: Some theorems on weakly contractive maps, Nonlinear anal. 47, 2683-2693 (2001) · Zbl 1042.47521 · doi:10.1016/S0362-546X(01)00388-1
[3]Dutta, P. N.; Choudhury, B. S.: A generalization of contraction principle in metric spaces, Fixed point theory appl., 8 pages (2008) · Zbl 1177.54024 · doi:10.1155/2008/406368
[4]Sessa, S.: On a weak commutativity condition of mappings in fixed point consideration, Publ. inst. Math. soc. 32, 149-153 (1982) · Zbl 0523.54030
[5]Jungck, G.: Compatible mappings and common fixed points, Int. J. Math. math. Sci. 9, No. 4, 771-779 (1986) · Zbl 0613.54029 · doi:10.1155/S0161171286000935
[6]Jungck, G.: Common fixed points for noncontinuous nonself maps on non-metric spaces, Far east J. Math. sci. 4, 199-215 (1996) · Zbl 0928.54043
[7]Beg, I.; Abbas, M.: Coincidence point and invariant approximation for mappings satisfying generalized weak contractive condition, Fixed point theory appl. 2006, 7 pages (2006) · Zbl 1133.54024 · doi:10.1155/FPTA/2006/74503
[8]Zhang, Q.; Song, Y.: Fixed point theory for generalized φ- weak contractions, Appl. math. Lett. 22, 75-78 (2009) · Zbl 1163.47304 · doi:10.1016/j.aml.2008.02.007
[9]đorić, D.: Common fixed point for generalized (ψ,φ)-weak contractions, Appl. math. Lett. 22, 1896-1900 (2009) · Zbl 1203.54040 · doi:10.1016/j.aml.2009.08.001
[10]Abbas, M.; đorić, D.: Common fixed point theorem for four mappings satisfying generalized weak contractive condition, Faculty of sciences and maths., uni. Of niŝ, serbia, filomat 24, No. 2, 1-10 (2010)
[11]Ran, A. C. M.; Reurings, M. C. B.: A fixed point theorem in partially ordered sets and some application to matrix equations, Proc. amer. Math. soc. 132, 1435-1443 (2004) · Zbl 1060.47056 · doi:10.1090/S0002-9939-03-07220-4
[12]Nieto, J. J.; Lopez, R. R.: Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22, 223-239 (2005) · Zbl 1095.47013 · doi:10.1007/s11083-005-9018-5
[13]Amini-Harandi, A.; Emami, H.: A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear anal. 72, No. 5, 2238-2242 (2010) · Zbl 1197.54054 · doi:10.1016/j.na.2009.10.023
[14]Ćirić, Lj.; Cakić, N.; Rajović, M.; Ume, J. S.: Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed point theory appl. 2008, 11 pages (2008) · Zbl 1158.54019 · doi:10.1155/2008/131294
[15]Harjani, J.; Sadarangani, K.: Fixed point theorems for weakly contractive mappings in partially ordered sets, Nonlinear anal. 71, 3403-3410 (2009) · Zbl 1221.54058 · doi:10.1016/j.na.2009.01.240
[16]Nashine, H. K.; Samet, B.: Fixed point results for mappings satisfying (ψ,φ)- weakly contractive condition in partially ordered metric spaces, Nonlinear anal. (2010)
[17]Radenović, S.; Kadelburg, Z.: Generalized weak contractions in partially ordered metric spaces, Comput. math. Appl. 60, 1776-1783 (2010) · Zbl 1202.54039 · doi:10.1016/j.camwa.2010.07.008
[18]Altun, I.; Damjanović, B.; đjorić, D.: Fixed point and common fixed point theorems on ordered cone metric spaces, Appl. math. Lett. 23, No. 3, 310-316 (2010) · Zbl 1197.54052 · doi:10.1016/j.aml.2009.09.016
[19]Boyd, D. W.; Wong, J. S.: On nonlinear contractions, Proc. amer. Math. soc. 20, No. 2, 458-464 (1969) · Zbl 0175.44903 · doi:10.2307/2035677