zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Maximal- and minimal symmetric solutions of fully fuzzy linear systems. (English) Zbl 1220.65033

Summary: We propose a new method to obtain symmetric solutions of a fully fuzzy linear system (FFLS) based on a 1-cut expansion. To this end, we solve the 1-cut of a FFLS (in the present paper, we assumed that the 1-cut of a FFLS is a crisp linear system or equivalently, the matrix coefficient and right hand side have triangular shapes), then some unknown symmetric spreads are allocated to each row of a 1-cut of a FFLS. So, after some manipulations, the original FFLS is transformed to solving 2n linear equations to find the symmetric spreads.

However, our method always give us a fuzzy number vector solution. Moreover, using the proposed method leads to determining the maximal- and minimal symmetric solutions of the FFLS which are placed in a tolerable solution set and a controllable solution set, respectively. However, the obtained solutions could be interpreted as bounded symmetric solutions of the FFLS which are useful for a large number of multiplications existing between two fuzzy numbers. Finally, some numerical examples are given to illustrate the ability of the proposed method.

MSC:
65F05Direct methods for linear systems and matrix inversion (numerical linear algebra)
15B15Fuzzy matrices
65C30Stochastic differential and integral equations
Software:
INTOPT_90
References:
[1]Friedman, M.; Ming, Ma.; Kandel, A.: Fuzzy linear system, Fuzzy sets and systems 96, 209-261 (1998)
[2]Allahviranloo, T.: Successive over relaxation iterative method for fuzzy system of linear equations, Appl. math. Comput. 162, 189-196 (2005) · Zbl 1062.65037 · doi:10.1016/j.amc.2003.12.085
[3]Allahviranloo, T.: A comment on fuzzy linear systems, Fuzzy sets and systems 140, 559 (2003) · Zbl 1050.15003 · doi:10.1016/S0165-0114(03)00139-8
[4]Allahviranloo, T.; Kermani, M. Afshar: Solution of a fuzzy system of linear equation, Appl. math. Comput. 175, 519-531 (2006) · Zbl 1095.65036 · doi:10.1016/j.amc.2005.07.048
[5]Allahviranloo, T.; Ahmady, E.; Ahmady, N.; Alketaby, Kh. Shams: Block Jacobi two stage method with Gauss–siedel ineer iterations for fuzzy system of linear equations, Appl. math. Comput. 175, 1217-1228 (2006) · Zbl 1093.65032 · doi:10.1016/j.amc.2005.08.047
[6]Abbasbandy, S.; Ezzati, R.; Jafarian, A.: Lu decomposition method for solving fuzzy system of equations, Appl. math. Comput. 172, 633-643 (2006) · Zbl 1088.65023 · doi:10.1016/j.amc.2005.02.018
[7]Abbasbandy, S.; Jafarian, A.: Steepest descent method for system of fuzzy linear equations, Appl. math. Comput. 175, 823-833 (2006) · Zbl 1088.65026 · doi:10.1016/j.amc.2005.07.036
[8]T. Allahviranloo, S. Salahshour, Fuzzy symmetric solutions of fuzzy linear systems, J. Comput. Appl. Math., in press (doi:10.1016/j.cam.2010.02.042).
[9]Allahviranloo, T.: Numerical methods for fuzzy system of linear equationa, Appl. math. Comput. 155, 493-502 (2004) · Zbl 1067.65040 · doi:10.1016/S0096-3003(03)00793-8
[10]Allahviranloo, T.: The Adomian decomposition method for fuzzy system of linear equations, Appl. math. Comput. 163, 553-563 (2005) · Zbl 1069.65025 · doi:10.1016/j.amc.2004.02.020
[11]Ming, Ma.; Friedman, M.; Kandel, A.: Duality in fuzzy linear systems, Fuzzy sets and systems 109, 55-58 (2000) · Zbl 0945.15002 · doi:10.1016/S0165-0114(98)00102-X
[12]Wang, K.; Zhend, B.: Inconsistent fuzzy linear systems, Appl. math. Comput. 181, 973-981 (2006) · Zbl 1122.15004 · doi:10.1016/j.amc.2006.02.019
[13]Wanga, X.; Zhong, Z.; Ha, M.: Iteration algorithms for solving a system of fuzzy linear equations, Fuzzy sets and systems 119, 121-128 (2001) · Zbl 0974.65035 · doi:10.1016/S0165-0114(98)00284-X
[14]Zheng, B.; Wang, K.: General fuzzy systems, Appl. math. Comput. 181, 1276-1286 (2006) · Zbl 1122.15005 · doi:10.1016/j.amc.2006.02.027
[15]Buckley, J. J.; Qu, Y.: Solving system of linear fuzzy equations, Fuzzy sets and systems 43, 33-43 (1991) · Zbl 0741.65023 · doi:10.1016/0165-0114(91)90019-M
[16]Buckley, J. J.; Qu, Y.: Solving linear and quadratic fuzzy equations, Fuzzy sets and systems 38, 43-59 (1990) · Zbl 0713.04004 · doi:10.1016/0165-0114(90)90099-R
[17]Buckley, J. J.; Qu, Y.: Solving fuzzy equations: a new concept, Fuzzy sets and systems 39, 291-301 (1991) · Zbl 0723.04005 · doi:10.1016/0165-0114(91)90099-C
[18]Muzzilio, S.; Reynaerts, H.: Fuzzy linear system of the form a1x+b1=A2x+b2, Fuzzy sets and systems 157, 939-951 (2006) · Zbl 1095.15004 · doi:10.1016/j.fss.2005.09.005
[19]Dehghan, M.; Hashemi, B.; Ghatee, M.: Computational methods for solving fully fuzzy linear systems, Appl. math. Comput. 179, 328-343 (2006) · Zbl 1101.65040 · doi:10.1016/j.amc.2005.11.124
[20]Dehghan, M.; Hashemi, B.; Ghatee, M.: Solution of the fully fuzzy linear systems using iterative techniques, Chaos solitons fractals 34, 316-336 (2007) · Zbl 1144.65021 · doi:10.1016/j.chaos.2006.03.085
[21]Vroman, A.; Deschrijver, G.; Kerre, E. E.: Solving systems of linear fuzzy equations by parametric functions–an improved algorithm, Fuzzy sets and systems 14, 1515-1534 (2007) · Zbl 1121.65026 · doi:10.1016/j.fss.2006.12.017
[22]T. Allahviranloo, N. Mikaelvand, Non-zero solutions of fully fuzzy linear systems, Int. J. Appl. Comput. Math. (in press).
[23]Dubois, D.; Prade, H.: Fuzzy sets and systems: theory and applications, (1980)
[24]Goetschel, R.; Voxman, W.: Elementary calculus, Fuzzy sets and systems 18, 31-43 (1986) · Zbl 0626.26014 · doi:10.1016/0165-0114(86)90026-6
[25]Zimmermann, H. J.: Fuzzy sets theory and applications, (1985)
[26]Kearfott, R. Baker: Rigorous global search: continuous problems, (1996)