zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A numerical methodology for the Painlevé equations. (English) Zbl 1220.65092

Summary: The six Painlevé transcendents P I P VI have both applications and analytic properties that make them stand out from most other classes of special functions. Although they have been the subject of extensive theoretical investigations for about a century, they still have a reputation for being numerically challenging. In particular, their extensive pole fields in the complex plane have often been perceived as ‘numerical mine fields’.

In the present work, we note that the Painlevé property in fact provides the opportunity for very fast and accurate numerical solutions throughout such fields. When combining a Taylor/Padé-based ordinary differential equation initial value solver for the pole fields with a boundary value solver for smooth regions, numerical solutions become available across the full complex plane. We focus here on the numerical methodology, and illustrate it for the P I equation. In later studies, we will concentrate on mathematical aspects of both the P I and the higher Painlevé transcendents.


MSC:
65L05Initial value problems for ODE (numerical methods)
34M55Painlevé and other special equations; classification, hierarchies
65L60Finite elements, Rayleigh-Ritz, Galerkin and collocation methods for ODE
Software:
DLMF; Chebfun
References:
[1]Jr., G. A. Baker; Graves-Morris, P. R.: Padé approximants, Encyclopedia of Mathematica and its applications 59 (1996)
[2]Barton, D.; Willers, I. M.; Zahar, R. V. M.: An implementation of the Taylor series method for ordinary differential equations, Comput. J. 14, 243-248 (1971)
[3]Berrut, J. P.; Trefethen, L. N.: Barycentric Lagrange interpolation, Siamrev. 46, 501-517 (2004) · Zbl 1061.65006 · doi:10.1137/S0036144502417715
[4]Boutroux, P.: Recherches sur LES transcendantes de M. Painlevé et l’étude asymptotique des équations différentielles du second ordre, Ann. école norm. 30, 255-375 (1913) · Zbl 44.0382.02 · doi:numdam:ASENS_1913_3_30__255_0
[5]Bruno, O. P.; Reitich, F.: Approximation of analytic functions: a method of enhanced convergence, Math. comp. 63, 195-213 (1994) · Zbl 0806.65018 · doi:10.2307/2153569
[6]Calvo, M. P.; Sanz-Serna, J. M.: High-order symplectic Runge – Kutta – Nyström methods, SIAM J. Sci. comput. 14, 1237-1252 (1993) · Zbl 0787.65056 · doi:10.1137/0914073
[7]Clarkson, P. A.: Painlevé equations – nonlinear special functions, Lecture notes in mathematics 1883 (2006)
[8]Corliss, G. F.: Integrating ODE’s in the complex plane - pole vaulting, Math. comput. 35, 1181-1189 (1980) · Zbl 0448.65044 · doi:10.2307/2006383
[9]Dormand, J. R.; El-Mikkawy, M. A. E.; Prince, P. J.: High-order embedded Runge – Kutta – Nyström formulae, IMA J. Num. anal. 7, 423-430 (1987) · Zbl 0627.65085 · doi:10.1093/imanum/7.4.423
[10]Dormand, J. R.; Prince, P. J.: Runge – Kutta – Nyström triples, Comput. math. Appl. 13, 937-949 (1987) · Zbl 0633.65061 · doi:10.1016/0898-1221(87)90066-6
[11]Dubrovin, B.; Grava, T.; Klein, C.: On universality of critical behaviors in the focusing nonlinear Schrödinger equation elliptic umbilic catastrophe and the tritronquée solution to the Painlevé-I equation, J. nonlinear sci. 19, 57-94 (2009) · Zbl 1220.37048 · doi:10.1007/s00332-008-9025-y
[12]Fornberg, B.: Apractical guide to pseudospectral methods, (1996)
[13]Gambier, B.: Sur LES équationes différentielles du second ordre et du premier degré don’t l’intégral générale est à points critique fixés, Acta math. 33, 1-55 (1910) · Zbl 40.0377.02 · doi:10.1007/BF02393211
[14]Graves-Morris, P. R.; Roberts, D. E.; Salam, A.: The epsilon algorithm and related topics, J. comput. Appl. math. 122, 51-80 (2000) · Zbl 0970.65004 · doi:10.1016/S0377-0427(00)00355-1
[15]Higham, N. J.: The numerical stability of barycentric Lagrange interpolation, IMA J. Num. anal. 24, 547-556 (2004) · Zbl 1067.65016 · doi:10.1093/imanum/24.4.547
[16]E. Hille, Ordinary differential equations in the complex domain. Reprint of the 1976 original. Dover Publications, Inc., Mineola, NY (1997).
[17]Joshi, N.; Kitaev, A.: On boutroux’s tritronquée solutions of the first Painlevé equation, Stud. appl. Math. 107, 253-291 (2001) · Zbl 1152.34395 · doi:10.1111/1467-9590.00187
[18]Kruskal, M. D.; Clarkson, P. A.: The Painlevé – kowalevski and poly-Painlevé tests for integrability, Stud. appl. Math. 86, 87-165 (1992) · Zbl 0803.35128
[19]Luke, Y. L.: Computations of coefficients in the polynomials of Padé approximations by solving systems of linear equations, J. comput. Appl. math. 6, 213-218 (1980) · Zbl 0446.65005 · doi:10.1016/0771-050X(80)90028-5
[20]Novokshenov, V. Yu.: Padé approximations for Painlevé I and iitranscendents, Theor. math. Phys. 159, 853-862 (2009) · Zbl 1185.34139 · doi:10.1007/s11232-009-0073-8
[21]Olver, F. W. J.; Lozier, D. W.; Boisvert, R. F.; Clark, C. W.: Nisthandbook of mathematical functions, (2010)
[22]Olver, S.: Numerical solution of Riemann – Hilbert problems: Painlevé II, Found. comput. Math. 11, 153-179 (2011) · Zbl 1214.30026 · doi:10.1007/s10208-010-9079-8
[23]Painlevé, P.: Mémoire sur LES équationes differentielles dont l’intégrale générale est uniforme, Bull. soc. Math. 28, 201-261 (1900) · Zbl 31.0337.03 · doi:numdam:BSMF_1900__28__201_0
[24]Painlevé, P.: Sur LES équationes différentielles du second ordre et d’ordre supérieur don’t l’intégrale générale est uniforme, Acta math. 21, 1-85 (1902) · Zbl 32.0340.01 · doi:10.1007/BF02419020
[25]Qin, H.; Lu, Y.: A note on an open problem about the first Painlevé equation, Acta math. Appl. sin. English ser. 24, 203-210 (2008) · Zbl 1155.34372 · doi:10.1007/s10255-005-5153-4
[26]Trefethen, L. N.: Spectral methods in Matlab, (2000)
[27]L. N. Trefethen, N. Hale, R.B. Platte, T.A. Driscoll, R. Pachón, Chebfun Version 3, http://www.maths.ox.ac.uk/chebfun/, University of Oxford (2009).
[28]Van Barel, M.; Heinig, G.; Kravanja, P.: A stabilized superfast solver for nonsymmetric Toeplitz systems, SIAM J. Matrix anal. Appl. 23, 494-510 (2001) · Zbl 1002.65033 · doi:10.1137/S0895479899362302
[29]Weideman, J. A. C.; Reddy, S. C.: A Matlab differentiation matrix suite, ACM toms 26, 465-519 (2000)
[30]Willers, I. M.: A new integration algorithm for ordinary differential equations based on continued fraction approximations, Comm. ACM 17, 504-508 (1974) · Zbl 0285.65045 · doi:10.1145/361147.361150
[31]Wynn, P.: The epsilon algorithm and operational formulas of numerical analysis, Math. comput. 15, 151-158 (1961) · Zbl 0102.33205 · doi:10.2307/2004221