zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Pattern formation, long-term transients, and the Turing-Hopf bifurcation in a space- and time-discrete predator-prey system. (English) Zbl 1220.92053
Summary: Understanding of population dynamics in a fragmented habitat is an issue of considerable importance. A natural modelling framework for these systems is spatially discrete. We consider a predator-prey system that is discrete both in space and time, and is described by a Coupled Map Lattice (CML). The prey growth is assumed to be affected by a weak Allee effect and the predator dynamics includes intra-specific competition. We first reveal the bifurcation structure of the corresponding non-spatial system. We then obtain the conditions of diffusive instability on the lattice. In order to reveal the properties of the emerging patterns, we perform extensive numerical simulations. We pay a special attention to the system properties in a vicinity of the Turing-Hopf bifurcation, which is widely regarded as a mechanism of pattern formation and spatiotemporal chaos in space-continuous systems. Counter-intuitively, we obtain that the spatial patterns arising in the CML are more typically stationary, even when the local dynamics is oscillatory. We also obtain that, for some parameter values, the system’s dynamics is dominated by long-term transients, so that the asymptotical stationary pattern arises as a sudden transition between two different patterns. Finally, we argue that our findings may have important ecological implications.
MSC:
92D40Ecology
92C15Developmental biology, pattern formation
39A60Applications of difference equations
92D25Population dynamics (general)
65C20Models (numerical methods)
References:
[1]Allen, L. S. J. (2007). An introduction to mathematical biology. Upper Saddle River: Pearson Prentice Hall.
[2]Allen, J. C., Schaffer, W. M., & Rosko, D. (1993). Chaos reduces species extinction by amplifying local population noise. Nature, 364, 229–232. · doi:10.1038/364229a0
[3]Alonso, S., Míguez, D. G., & Sagués, F. (2007). Differential susceptibility to noise of mixed Turing and Hopf modes in a photosensitive chemical medium. Europhys. Lett., 81, 1–8.
[4]Andersen, M. (1991). Properties of some density-dependent integrodifference equation population models. Math. Biosci., 104, 135–157. · Zbl 0726.92026 · doi:10.1016/0025-5564(91)90034-G
[5]Banerjee, M., & Petrovskii, S. V. (2010). Self-organized spatial patterns and chaos in a ratio-dependent predator–prey system. Theor. Ecol. doi: 10.1007/s12080-010-0073-1 (in press).
[6]Baurmann, M., Gross, T., & Feudel, U. (2007). Instabilities in spatially extended predator–prey systems: Spatio-temporal patterns in the neighborhood of Turing–Hopf bifurcations. J. Theor. Biol., 245, 220–229. · doi:10.1016/j.jtbi.2006.09.036
[7]Brindley, J., & Everson, R. M. (1989). Disturbance propagation in Coupled Lattice Maps. Phys. Lett. A, 134, 229–236. · doi:10.1016/0375-9601(89)90401-5
[8]Comins, H. N., Hassell, M. P., & May, R. M. (1992). The spatial dynamics of host-parasitoid systems. J. Anim. Ecol., 61, 735–748. · doi:10.2307/5627
[9]Courchamp, F., Clutton-Brock, T., & Grenfell, B. (1999). Inverse density dependence and the Allee effect. TREE, 14, 405–410.
[10]Courchamp, F., Berec, L., & Gascoigne, J. (2008). Allee effects in ecology and conservation. Oxford: Oxford University Press.
[11]Deissler, R. J. (1984). One-dimensional strings, random fluctuations, and complex chaotic structures. Phys. Lett. A, 100, 451–454. · doi:10.1016/0375-9601(84)90823-5
[12]Fasham, M. J. R. (1978). The statistical and mathematical analysis of plankton patchiness. Oceanogr. Mar. Biol. Ann. Rev., 16, 43–79.
[13]Greig-Smith, P. (1979). Pattern in vegetation. J. Ecol., 67, 755–779. · doi:10.2307/2259213
[14]Grindrod, P. (1996). The theory and application of reaction diffusion equations (2nd ed.). Oxford: Claredon Press.
[15]Hassell, M. P., Comins, H. N., & May, R. M. (1991). Spatial structure and chaos in insect population dynamics. Nature, 353, 255–258. · doi:10.1038/353255a0
[16]Kaneko, K. (1986). Turbulence in coupled map lattices. Physica D, 18, 475–476. · doi:10.1016/0167-2789(86)90219-8
[17]Kaneko, K. (1989). Spatiotemporal chaos in one- and two-dimensional coupled map lattices. Physica D, 37, 60–82. · doi:10.1016/0167-2789(89)90117-6
[18]Kot, M., & Schaffer, W. M. (1986). Discrete-time growth-dispersal models. Math. Biosci., 80, 109–136. · Zbl 0595.92011 · doi:10.1016/0025-5564(86)90069-6
[19]Kot, M., Lewis, M. A., & van der Driessche, P. (1996). Dispersal data and the spread of invading organisms. Ecology, 77, 2027–2042. · doi:10.2307/2265698
[20]Lefever, R., & Lejeune, O. (1997). On the origin of tiger bush. Bull. Math. Biol., 59, 263–294. · Zbl 0903.92031 · doi:10.1007/BF02462004
[21]Levin, S. A. (1992). The problem of pattern and scale in ecology. Ecology, 73, 1943–1967. · doi:10.2307/1941447
[22]Levin, S. A., & Segel, L. A. (1976). Hypothesis for origin of planktonic patchiness. Nature, 259, 659. · doi:10.1038/259659a0
[23]Levin, S. A., & Segel, L. A. (1985). Pattern generation in space and aspect. SIAM Rev., 27, 45–67. · Zbl 0576.92008 · doi:10.1137/1027002
[24]Liu, R.-T., Liaw, S.-S., & Maini, P. K. (2007). Oscillatory Turing patterns in a simple reaction-diffusion system. J. Korean Phys. Soc., 50(1), 234–238. · doi:10.3938/jkps.50.1827
[25]Malchow, H., Petrovskii, S. V., & Venturino, E. (2008). Spatiotemporal patterns in ecology and epidemiology: theory, models, and simulations. London: Chapman & Hall/CRC Press.
[26]Martin, A. P. (2003). Phytoplankton patchiness: The role of lateral stirring and mixing. Progr. Oceanogr., 57, 125–174. · doi:10.1016/S0079-6611(03)00085-5
[27]Meinhardt, H. (1982). Models of biological pattern formation. London: Academic Press.
[28]Meixner, M., De Wit, A., Bose, S., & Scholl, E. (1997). Generic spatiotemporal dynamics near codimension-two Turing–Hopf bifurcations. Phys. Rev. E, 55, 6690–6697. · doi:10.1103/PhysRevE.55.6690
[29]Murray, J. D. (1989). Mathematical biology. Berlin: Springer.
[30]Neubert, M. G., Kot, M., & Lewis, M. A. (1995). Dispersal and pattern formation in a discrete-time predator–prey model. Theor. Popul. Biol., 48, 7–43. · Zbl 0863.92016 · doi:10.1006/tpbi.1995.1020
[31]Okubo, A. (1980). Diffusion and ecological problems. Berlin: Springer.
[32]Okubo, A., & Levin, S. A. (2001). Diffusion and ecological problems: modern perspectives (2nd ed.). New York: Springer.
[33]Pascual, M. (1993). Diffusion-induced chaos in a spatial predator–prey system. Proc. R. Soc. Lond. B, 251, 1–7. · doi:10.1098/rspb.1993.0001
[34]Petrovskii, S. V., & Malchow, H. (1999). A minimal model of pattern formation in a prey–predator system. Math. Comput. Model., 29, 49–63. · Zbl 0990.92040 · doi:10.1016/S0895-7177(99)00070-9
[35]Petrovskii, S. V., & Malchow, H. (2001). Wave of chaos: New mechanism of pattern formation in spatio-temporal population dynamics. Theor. Popul. Biol., 59, 157–174. · Zbl 1035.92046 · doi:10.1006/tpbi.2000.1509
[36]Petrovskii, S. V., Li, B.-L., & Malchow, H. (2004). Transition to spatiotemporal chaos can resolve the paradox of enrichment. Ecol. Complex., 1, 37–47. · doi:10.1016/j.ecocom.2003.10.001
[37]Ricard, M. R., & Mischler, S. (2009). Turing instabilities at Hopf bifurcation. J. Nonlinear Sci., 19, 467–496. · Zbl 1188.35104 · doi:10.1007/s00332-009-9041-6
[38]Segel, L. A., & Jackson, J. L. (1972). Dissipative structure: An explanation and an ecological example. J. Theor. Biol., 37, 545–559. · doi:10.1016/0022-5193(72)90090-2
[39]Sherratt, J. A., Lewis, M. A., & Fowler, A. C. (1995). Ecological chaos in the wake of invasion. Proc. Natl. Acad. Sci. USA, 92, 2524–2528. · Zbl 0819.92024 · doi:10.1073/pnas.92.7.2524
[40]Sherratt, J. A., Eagan, B. T., & Lewis, M. A. (1997). Oscillations and chaos behind predator–prey invasion: mathematical artifact or ecological reality? Philos. Trans. R. Soc. Lond. B, 352, 21–38. · doi:10.1098/rstb.1997.0003
[41]Stephens, P. A., & Sutherland, W. J. (1999). Consequences of the Allee effect for behaviour, ecology and conservation. TREE, 14, 401–405.
[42]Turing, A. M. (1952). The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B, 237, 37–72. · doi:10.1098/rstb.1952.0012
[43]Vastano, J. A., Pearson, J. E., Horsthemke, W., & Swinney, H. L. (1987). Chemical pattern formation with equal diffusion coefficients. Phys. Lett. A, 124, 320–324. · doi:10.1016/0375-9601(87)90019-3
[44]White, S. M., & White, K. A. J. (2005). Relating coupled map lattices to integro-difference equations: Dispersal-driven instabilities in coupled map lattices. J. Theor. Biol., 235, 463–475. · doi:10.1016/j.jtbi.2005.01.026
[45]Yang, L., & Epstein, I. R. (2003). Oscillatory Turing Patterns in reaction-diffusion systems with two coupled layers. Phys. Rev. Lett., 90, 178303(4).
[46]Yang, L., Zhabotinsky, A. M., & Epstein, I. R. (2004). Stable squares and other oscillatory Turing patterns in a reaction-diffusion model. Phys. Rev. Lett., 92, 198303(4).