zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A note on the fractional-order Volta’s system. (English) Zbl 1221.34017
Summary: We deal with the fractional-order Volta’s system. It is based on the concept of chaotic system, where the mathematical model of system contains fractional order derivatives. This system has simple structure and can display a double-scroll attractor. The behavior and stability analysis of the integer-order and the fractional commensurate and non-commensurate order Volta’s system with total order less than 3 which exhibits chaos are presented as well.
34A08Fractional differential equations
37D45Strange attractors, chaotic dynamics
[1]Arena, P.; Caponetto, R.; Fortuna, L.; Porto, D.: Bifurcation and chaos in noninteger order cellular neural networks, Int J bifurcat chaos 8, No. 7, 1527-1539 (1998) · Zbl 0936.92006 · doi:10.1142/S0218127498001170
[2]Arena, P.; Caponetto, R.; Fortuna, L.; Porto, D.: Nonlinear noninteger order circuits and systems – an introduction, (2000)
[3]Ahmad, W. M.: Hyperchaos in fractional order nonlinear systems, Chaos solitons fract 26, 1459-1465 (2005) · Zbl 1100.37017 · doi:10.1016/j.chaos.2005.03.031
[4]Barbosa, R. S.; Machado, J. A. Tenreiro; Vinagre, B. M.; Calderón, A. J.: Analysis of the van der Pol oscillator containing derivatives of fractional order, J vib control 13, No. 9 – 10, 1291-1301 (2007) · Zbl 1158.70009 · doi:10.1177/1077546307077463
[5]Carlson GE, Halijak CA. Approximation of fractional capacitors (1/s)1/n by a regular Newton process. In: Proceedings of the sixth midwest symposium on circuit theory, Madison, Wisconsin, May 6 – 7, 1963.
[6]Dorčák Lcaron;. Numerical models for simulation the fractional-order control systems, UEF-04-94. Košice, Slovakia: The Academy of Sciences, Institute of Experimental Physics; 1994.
[7]Charef, A.; Sun, H. H.; Tsao, Y. Y.; Onaral, G.: Fractal systems as represented by singularity function, IEEE trans autom control 37, No. 9, 1465-1470 (1992) · Zbl 0825.58027 · doi:10.1109/9.159595
[8]Chen, Y. Q.; Vinagre, B. M.; Podlubny, I.: Continued fraction expansion approaches to discretizing fractional order derivatives – an expository review, Nonlinear dyn 38, No. 1 – 4, 155-170 (2004) · Zbl 1134.93300 · doi:10.1007/s11071-004-3752-x
[9]Deng, W. H.; Li, C. P.: Chaos synchronization of the fractional Lu system, Phys A 353, 61-72 (2005)
[10]Deng, W.: Short memory principle and a predictor – corrector approach for fractional differential equations, J comput appl math 206, 174-188 (2007) · Zbl 1121.65128 · doi:10.1016/j.cam.2006.06.008
[11]Deng, W.: Numerical algorithm for the time fractional Fokker – Planck equation, J comput phys 227, 1510-1522 (2007)
[12]Deng, W.; Li, Ch.; Lu, J.: Stability analysis of linear fractional differential system with multiple time delays, Nonlinear dyn 48, 409-416 (2007) · Zbl 1185.34115 · doi:10.1007/s11071-006-9094-0
[13]Diethelm, K.; Ford, N. J.; Freed, A. D.; Luchko, Yu.: Algorithms for the fractional calculus: a selection of numerical methods, Comput methods appl mech eng 194, 743-773 (2005) · Zbl 1119.65352 · doi:10.1016/j.cma.2004.06.006
[14]Ford N, Simpson A. The numerical solution of fractional differential equations: speed versus accuracy. Numerical Analysis Report 385. Manchester: Manchester Centre for Computational Mathematics; 2001.
[15]Gao, X.; Yu, J.: Chaos in the fractional order periodically forced complex Duffing’s oscillators, Chaos solitons fract 24, 1097-1104 (2005) · Zbl 1088.37046 · doi:10.1016/j.chaos.2004.09.090
[16]Hao, B.: Elementary symbolic dynamics and chaos in dissipative systems, (1989)
[17]Hartley, T. T.; Lorenzo, C. F.; Qammer, H. K.: Chaos on a fractional Chua’s system, IEEE trans circuits syst theory appl 42, No. 8, 485-490 (1995)
[18]Hwang, Ch.; Leu, J. F.; Tsay, S. Y.: A note on time-domain simulation of feedback fractional-order systems, IEEE trans autom control 47, No. 4, 625-631 (2002)
[19]Li, Ch.; Chen, G.: Chaos and hyperchaos in the fractional-order Rössler equations, Phys A 341, 55-61 (2004)
[20]Lepage, W. R.: Complex variables and the Laplace transform for engineers, (1961) · Zbl 0094.30101
[21]Li, Ch.; Peng, G.: Chaos in Chen’s system with a fractional order, Chaos solitons fract 22, 443-450 (2004) · Zbl 1060.37026 · doi:10.1016/j.chaos.2004.02.013
[22]Li Y, Chen YQ, Podlubny I, Cao Y. Mittag – Leffler stability of fractional order nonlinear dynamic system. In: Proceedings of the third IFAC workshop on fractional differentiation and its applications, Ankara, Turkey, 5 – 7 November 2008.
[23]Lu, J. G.; Chen, G.: A note on the fractional-order Chen system, Chaos solitons fract 27, 685-688 (2006) · Zbl 1101.37307 · doi:10.1016/j.chaos.2005.04.037
[24]Lu, J. G.: Chaotic dynamics and synchronization of fractional-order arneodo’s systems, Chaos solitons fract 26, 1125-1133 (2005) · Zbl 1074.65146 · doi:10.1016/j.chaos.2005.02.023
[25]Lu, J. G.: Chaotic dynamics and synchronization of fractional-order Chua’s circuits with a piecewise-linear nonlinearity, Int J modern phys B 19, No. 20, 3249-3259 (2005) · Zbl 1124.37309 · doi:10.1142/S0217979205032115
[26]Marcos, M. Dag.; Duarte, F. B. M.; Machado, J. A. Tenreiro: Fractional dynamics in the trajectory control of redundant manipulators, Commun nonlinear sci numer simul 13, 1836-1844 (2008)
[27]Matignon D. Stability result on fractional differential equations with applications to control processing. In: IMACS-SMC proceedings, Lille, France, July; 1996. p. 963 – 8.
[28]Matignon D. Stability properties for generalized fractional differential systems. In: Proceedings of fractional differential systems: models, methods and applications, vol. 5; 1998. p. 145 – 58. · Zbl 0920.34010 · doi:10.1051/proc:1998004 · doi:http://www.edpsciences.org/articles/proc/Vol.5/contents.htm
[29]Nakagava, M.; Sorimachi, K.: Basic characteristics of a fractance device, IEICE trans fundam 75-A, No. 12, 1814-1818 (1992)
[30]Nimmo, S.; Evans, A. K.: The effects of continuously varying the fractional differential order of chaotic nonlinear systems, Chaos solitons fract 10, No. 7, 1111-1118 (1999) · Zbl 0980.34032 · doi:10.1016/S0960-0779(98)00088-5
[31]Oldham, K. B.; Spanier, J.: The fractional calculus, (1974)
[32]Oustaloup, A.: La derivation non entiere: theorie, synthese et applications, La derivation non entiere: theorie, synthese et applications (1995) · Zbl 0864.93004
[33]Oustaloup A, Sabatier J, Lanusse P, Malti R, Melchior P, Moreau X, et al. An overview of the CRONE approach in system analysis, modeling and identification, observation and control. In: Proceedings of the 17th World Congress IFAC, Seoul, Korea, July 6 – 11, 2008. p. 14254 – 65.
[34]Parada, F. J. V.; Tapia, J. A. O.; Ramirez, J. A.: Effective medium equations for fractional fick’s law in porous media, Phys A 373, 339-353 (2007)
[35]Petráš, I.: Control of fractional-order Chua’s system, J electr eng 53, No. 7 – 8, 219-222 (2002)
[36]Petráš, I.; ľ Dorčák, .: Fractional-order control systems: modelling and simulation, Fract calculus appl anal 6, No. 2, 205-232 (2003)
[37]Petráš, I.: Chaos in the fractional-order volta’s system: modeling and simulation, Nonlinear dyn (2008)
[38]Petráš, I.: A note on the fractional-order Chua’s system, Chaos solitons fract 38, No. 1, 140-147 (2008)
[39]Petráš I. Stability of fractional-order systems with rational orders. Available from: http://arxiv.org/abs/0811.4102; 2008.
[40]Podlubny, I.: Fractional differential equations, (1999)
[41]Podlubny, I.; Petráš, I.; Vinagre, B. M.; O’leary, P.; ľ Dorčák, .: Analogue realization of fractional-order controllers, Nonlinear dyn 29, No. 1 – 4, 281-296 (2002)
[42]Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation, Fract calculus appl anal 5, No. 4, 367-386 (2002) · Zbl 1042.26003
[43]Podlubny, I.: Fractional-order systems and PIλdμ-controllers, IEEE trans autom control 44, No. 1, 208-213 (1999) · Zbl 1056.93542 · doi:10.1109/9.739144
[44]Podlubny, I.: Matrix approach to discrete fractional calculus, Fract calculus appl anal 3, No. 4, 359-386 (2000) · Zbl 1030.26011
[45]Podlubny, I.; Chechkin, A.; Skovranek, T.; Chen, Y. Q.; Jara, B. M. Vinagre: Matrix approach to discrete fractional calculus. II: partial fractional differential equations, J comput phys 228, No. 8, 3137-3153 (2009) · Zbl 1160.65308 · doi:10.1016/j.jcp.2009.01.014
[46]Vinagre, B. M.; Chen, Y. Q.; Petráš, I.: Two direct tustin discretization methods for fractional-order differentiator/integrator, J franklin inst 340, 349-362 (2003) · Zbl 1051.93031 · doi:10.1016/j.jfranklin.2003.08.001
[47]Tavazoei, M. S.; Haeri, M.: Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems, IET signal process 1, No. 4, 171-181 (2007)
[48]Tavazoei, M. S.; Haeri, M.: A necessary condition for double scroll attractor existence in fractional-order systems, Phys lett A 367, 102-113 (2007) · Zbl 1209.37037 · doi:10.1016/j.physleta.2007.05.081
[49]Tavazoei, M. S.; Haeri, M.: Limitations of frequency domain approximation for detecting chaos in fractional order systems, Nonlinear anal 69, 1299-1320 (2008) · Zbl 1148.65094 · doi:10.1016/j.na.2007.06.030
[50]Tavazoei, M. S.; Haeri, M.: Chaotic attractors in incommensurate fractional order systems, Phys D 237, 2628-2637 (2008) · Zbl 1157.26310 · doi:10.1016/j.physd.2008.03.037
[51]Torvik, P. J.; Bagley, R. L.: On the appearance of the fractional derivative in the behavior of real materials, Trans ASME 51, 294-298 (1984) · Zbl 1203.74022 · doi:10.1115/1.3167615
[52]Tseng, Ch.Ch.: Design of FIR and IIR fractional order simpson digital integrators, Signal process 87, 1045-1057 (2007) · Zbl 1186.94343 · doi:10.1016/j.sigpro.2006.09.006
[53]Wang, J. C.: Realizations of generalized warburg impedance with RC ladder networks and transmission lines, J electrochem soc 134, No. 8, 1915-1920 (1987)
[54]Westerlund, S.: Dead matter has memory!, (2002)
[55]Wolf, A.; Swift, J. B.; Swinney, H. L.; Vastano, J. A.: Determining Lyapunov exponents from a time series, Phys D 16, 285-317 (1985) · Zbl 0585.58037 · doi:10.1016/0167-2789(85)90011-9