zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Topology identification and adaptive synchronization of uncertain complex networks with adaptive double scaling functions. (English) Zbl 1221.34046
Summary: This paper discusses topology identification and adaptive synchronization of uncertain complex networks with scaling functions. In comparison with existing scaling function synchronization, the scaling function can be identified by adaptive laws in this paper. Moreover, the topological structure of uncertain networks are identified simultaneously in the process of synchronization. Illustrative examples are presented to demonstrate the application of the theoretical results.

MSC:
34A55Inverse problems of ODE
34D06Synchronization
92B20General theory of neural networks (mathematical biology)
References:
[1]Boccaletti, S.; Latora, V.; Moreno, Y.; Chavezf, M.; Hwanga, U.: Complex networks: structure and dynamics, Phys rep 424, 175-308 (2006)
[2]Li, X.; Chen, G.: Synchronization and desynchronization of complex dynamical networks: an engineering viewpoint, IEEE trans circ syst I 50, 1381-1390 (2003)
[3]Lü, J.; Yu, X.; Chen, G.: Chaos synchronization of general complex dynamical networks, Physica A 334, 281-302 (2004)
[4]Zhou, J.; Chen, T.; Xiang, L.: Adaptive synchronization of coupled chaotic systems based on parameters identification and its applications, Int J bifurcation chaos 16, No. 10, 2923-2933 (2006) · Zbl 1142.34387 · doi:10.1142/S0218127406016550
[5]Zhou, J.; Xiang, L.; Liu, Z.: Global synchronization in general complex delayed dynamical networks and its applications, Physica A 385, 729-742 (2007)
[6]Ma, Z.; Liu, Z.; Zhang, G.: A new method to realize cluster synchronization in connected chaotic networks, Chaos 16, No. 2, 023103 (2006) · Zbl 1146.37330 · doi:10.1063/1.2184948
[7]Kocarev, L.; Amato, P.: Synchronization in power-law networks, Chaos 15, 024101 (2005) · Zbl 1080.37106 · doi:10.1063/1.1899283
[8]Wang, X.; Chen, G.: Synchronization in scale-free dynamical networks: robustness and fragility, IEEE trans circ syst I 49, 54-62 (2002)
[9]Watts, D.; Strogatz, S.: Collective dynamics of ’small-world’ networks, Nature 391, No. 4, 440-442 (1998)
[10]Barabasi, A.; Albert, R.: Emergence of scaling in random networks, Science 286, No. 15, 509-512 (1999) · Zbl 1226.05223 · doi:10.1126/science.286.5439.509
[11]Strogatz, S.: Exploring complex networks, Nature 410, 268-276 (2001)
[12]Tang, Y.; Fang, J.: Synchronization of N-coupled fractional-order chaotic systems with ring connection, Commun nonlinear sci numer simulat 15, No. 2, 401-412 (2010) · Zbl 1221.34103 · doi:10.1016/j.cnsns.2009.03.024
[13]Wu, X.: Synchronization-based topology identification of weighted general complex dynamical networks with time-varying coupling delay, Physica A 387, 997-1008 (2008)
[14]Tang, Y.; Qiu, R.; Fang, J.; Miao, Q.; Xia, M.: Adaptive lag synchronization in unknown stochastic chaotic neural networks with discrete and distributed time-varying delays, Phys lett A 372, 4425-4433 (2008) · Zbl 1221.82078 · doi:10.1016/j.physleta.2008.04.032
[15]Zhou, J.; Lu, J.: Topology identification of weighted complex dynamical networks, Physica A 386, No. 1, 481-491 (2007)
[16]Lu, J.; Cao, J.: Adaptive complete synchronization of two identical or different chaotic (hyperchaotic) systems with fully unknown parameters, Chaos 15, 043901 (2005) · Zbl 1144.37378 · doi:10.1063/1.2089207
[17]Lin, W.; Ma, H.: Failure of parameter identification based on adaptive synchronization techniques, Phys rev E 75, 066212 (2007)
[18]Yu, W.; Cao, J.: Adaptive Q – S (lag, anticipated, and complete) time-varying synchronization and parameters identification of uncertain delayed neural networks, Chaos 16, 023119 (2006) · Zbl 1146.93371 · doi:10.1063/1.2204747
[19]Yu, W.; Cao, J.: Adaptive synchronization and lag synchronization of uncertain dynamical system with time delay based on parameter identification, Physica A 375, No. 2, 467-482 (2007)
[20]Yu, W.; Chen, G.; Cao, J.; Lü, J.; Parlitz, U.: Parameter identification of dynamical systems from time series, Phys rev E 75, No. 6, 067201 (2007)
[21]Zhang, Q.; Lu, J.; Lü, J.; Tse, C.: Adaptive feedback synchronization of a general complex dynamical network with delayed nodes, IEEE trans circ syst II 55, No. 2, 183-187 (2008)
[22]Zhou, J.; Lu, J.; Lü, J.: Adaptive synchronization of an uncertain complex dynamical network, IEEE trans autom control 51, No. 4, 652-656 (2006)
[23]Zhou, J.; Lu, J.; Lü, J.: Pinning adaptive synchronization of a general complex dynamical network, Automatica 44, No. 4, 996-1003 (2008)
[24]Liu, H.; Lu, J.; Lü, J.; David, J.: Structure identification of uncertain general complex dynamical networks with time delay, Automatica 45, No. 4, 1799-1807 (2009) · Zbl 1185.93031 · doi:10.1016/j.automatica.2009.03.022
[25]Guo, W.; Austin, F.; Chen, S. H.: Global synchronization of nonlinearly coupled complex networks with non-delayed and delayed coupling, Commun nonlinear sci numer simulat 15, 1631-1639 (2010) · Zbl 1221.34213 · doi:10.1016/j.cnsns.2009.06.016
[26]Tang, H.; Chen, L.; Lu, J.; Tse, C.: Adaptive synchronization between two complex networks with nonidentical topological structures, Physica A 387, No. 2, 5623-5630 (2008)
[27]Zhang, R.; Yang, Y.; Xu, Z.; Hu, M.: Function projective synchronization in drive – response dynamical network, Phys lett A 374, 3025-3028 (2010)
[28]Tang, Y.; Fang, J.: General methods for modified projective synchronization of hyperchaotic systems with known or unknown parameters, Phys lett A 372, 1816-1826 (2008) · Zbl 1220.37027 · doi:10.1016/j.physleta.2007.10.043
[29]Lorenz, E.: Deterministic non-periodic flow, J atmos sci 20, 130-141 (1963)
[30]Lü, J.; Chen, G.: A new chaotic attractor coined, Int J bifurcation chaos 12, No. 3, 659-661 (2002) · Zbl 1063.34510 · doi:10.1142/S0218127402004620