zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Effect of prey refuge on a harvested predator-prey model with generalized functional response. (English) Zbl 1221.34149
Summary: A predator–prey model with generalized response function incorporating a prey refuge and independent harvesting in each species are studied by using the analytical approach. A constant proportion of prey using refuges is considered. We will evaluate the effects with regard to the local stability of equilibria, the equilibrium density values and the long-term dynamics of the interacting populations. Some numerical simulations are carried out.
34D20Stability of ODE
92D25Population dynamics (general)
[1]Holling, C. S.: Some characteristics of simple types of predation and parasitism, Can entomol 91, 385-398 (1959)
[2]Hassel, M. P.; May, R. M.: Stability in insect host-parasite models, J anim ecol 42, 693-726 (1973)
[3]Smith, J. Maynard: Models in ecology, (1974)
[4]Hassell, M. P.: The dynamics of arthropod predator – prey systems, (1978)
[5]Hoy, M. A.: Almonds (California), World crop pests 1B (1985)
[6]Sih, A.: Prey refuges and predator – prey stability, Theor popul biol 31, 1-12 (1987)
[7]Taylor, R. J.: Predation, (1984)
[8]Gonzalez-Olivares, E.; Ramos-Jiliberto, R.: Dynamic consequences of prey refuges in a simple model system: more prey, fewer predators and enhanced stability, Ecol model 166, 135-146 (2003)
[9]Krivan, V.: Effects of optimal antipredator behavior of prey on predator – prey dynamics: the role of refuges, Theor popul biol 53, 131-142 (1998) · Zbl 0945.92021 · doi:10.1006/tpbi.1998.1351
[10]Kar, T. K.: Stability analysis of a prey – predator model incorporating a prey refuge, Commun nonlinear sci numer simul 10, 681-691 (2005) · Zbl 1064.92045 · doi:10.1016/j.cnsns.2003.08.006
[11]Huang, Y. J.; Chen, F. D.; Li, Z.: Stability analysis of a prey – predator model with Holling type III response function incorporating a prey refuge, Appl math comput 182, 672-683 (2006) · Zbl 1102.92056 · doi:10.1016/j.amc.2006.04.030
[12]Brauer, F.; Soudack, A. C.: Stability regions and transition phenomena for harvested predator – prey systems, J math biol 7, 319-337 (1979) · Zbl 0397.92019 · doi:10.1007/BF00275152
[13]Brauer, F.; Soudack, A. C.: Stability regions in predator – prey systems with constant prey harvesting, J math biol 8, 55-71 (1979) · Zbl 0406.92020 · doi:10.1007/BF00280586
[14]Brauer, F.; Soudack, A. C.: Constant-rate stocking of predator – prey systems, J math biol 11, 1-14 (1981) · Zbl 0448.92020 · doi:10.1007/BF00275820
[15]Brauer, F.; Soudack, A. C.: Coexistence properties of some predator – prey systems under constant rate harvesting, J math biol 12, 101-114 (1981) · Zbl 0482.92015 · doi:10.1007/BF00275206
[16]Dai, G.; Tang, M.: Coexistence region and global dynamics of a harvested predator – prey system, SIAM J appl math 58, No. 1, 193-210 (1998) · Zbl 0916.34034 · doi:10.1137/S0036139994275799
[17]Birkoff, G.; Rota, G. C.: Ordinary differential equations, (1982)