zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Synchronization of delayed fuzzy cellular neural networks with impulsive effects. (English) Zbl 1221.34194
Summary: This letter studies synchronization of delayed fuzzy cellular neural networks with impulses and all the parameters unknown. To avoid the difficulties which may be brought by the impulses, a non-impulsive system is used to replace the system with impulses. Then by the well known Lyapunov–LaSalle principle, some new stability criteria are obtained. An example and its simulation is given to illustrate the simpleness and effectiveness of our main results.
MSC:
34K20Stability theory of functional-differential equations
34K45Functional-differential equations with impulses
37D45Strange attractors, chaotic dynamics
37N35Dynamical systems in control
92B20General theory of neural networks (mathematical biology)
References:
[1]Pecora, L. M.; Carrol, T. L.: Synchronization in chaotic systems, Phys rev lett 64, 821-823 (1990)
[2]Pecora, L. M.; Carrol, T. L.; Johnson, G. A.: Fundamentals of synchronization in chaotic systems, concepts, and applications, Chaos 7, 520-543 (1998) · Zbl 0933.37030 · doi:10.1063/1.166278 · doi:http://ojps.aip.org/journal_cgi/getabs?KEY=CHAOEH&cvips=CHAOEH000007000004000520000001&gifs=Yes
[3]Chen, G.; Zhou, J.; Liu, Z.: Global synchronization of coupled delayed neural networks and applications to chaotic cellular neural networks model, Int J bifurcat chaos 14, 29-40 (2004) · Zbl 1077.37506 · doi:10.1142/S0218127404010655
[4]Zhou, J.; Chen, T. P.; Xiang, L.: Robust synchronization of delayed neural networks based on adaptive control and parameters identification, Chaos, solitons, fractals 27, 905-913 (2006) · Zbl 1091.93032 · doi:10.1016/j.chaos.2005.04.022
[5]Cao, J.; Lu, J.: Adaptive synchronization of neural networks with or without time-varying delays, Chaos 16, 013133 (2006) · Zbl 1144.37331 · doi:10.1063/1.2178448
[6]Yang, Y.; Cao, J.: Exponential lag synchronization of class of chaotic delayed neural networks with impulsive effects, Physica A 386, 492-502 (2007)
[7]Zhu, W.; Xu, D.; Huang, Y.: Global impulsive exponential synchronization of time-delayed coupled chaotic systems, Chaos soli fract 35, 904-912 (2008) · Zbl 1141.37019 · doi:10.1016/j.chaos.2006.05.078
[8]Sheng, L.; Yang, H.: Exponential synchronization of class neural networks with mixed time-varying delays and impulsive effects, Neurocomputing 71, 3666-3674 (2008)
[9]Sun, J.; Zhang, Y.; Wu, Q.: Impulsive control for the stabilization and synchronization for the lobenz systems, Phys lett A 298, 153-160 (2002) · Zbl 0995.37021 · doi:10.1016/S0375-9601(02)00466-8
[10]Huang, D. B.: Synchronization-based estimation of all parameters of chaotic systems from time series, Phys rev E 69, 7201-7210 (2004)
[11]Yang T, Yang LB, Wu CW, Chua LO. Fuzzy cellular neural networks: theory. In: Proceedings of IEEE international workshops on cellular neural networks and applications. 1996; p. 181 – 6.
[12]Yang, T.; Yang, L. B.: The global stability of fuzzy cellular neural networks, IEEE trans circuits syst 43, 880-883 (1996)
[13]Yuan, K.; Cao, J.; Deng, J.: Exponential stability and periodic solutions of fuzzy cellular neural networks with time-varying delays, Neurocomputing 69, 1619-1627 (2006)
[14]Ding, W.; Han, M.: Synchronization of delayed fuzzy cellular neural networks based on adaptive control, Phys lett A 372, 4674-4681 (2008) · Zbl 1221.94094 · doi:10.1016/j.physleta.2008.04.053
[15]Yan, J.; Zhao, A.: Oscillation and stability of linear impulsive delay differential equation, J math anal appl 227, 187-194 (1998) · Zbl 0917.34060 · doi:10.1006/jmaa.1998.6093
[16]Kuang, Y.: Delayed differential equations with application in population dynamics, (1993) · Zbl 0777.34002