zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Existence results for fractional impulsive integrodifferential equations in Banach spaces. (English) Zbl 1221.34215
Summary: This paper is mainly concerned with the existence of solutions of first order nonlinear impulsive fractional integrodifferential equations in Banach spaces. The results are obtained by using fixed-point principles. Further, some interesting examples are presented to illustrate the theory.
MSC:
34K37Functional-differential equations with fractional derivatives
26A33Fractional derivatives and integrals (real functions)
45J05Integro-ordinary differential equations
References:
[1]Ahmad, B.; Nieto, J. J.: Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions, Boundary value problems, 1-11 (2009)
[2]Balachandran, K.; Park, D. G.: Existence of solutions of quasilinear integrodifferential evolution equations in Banach spaces, Bulletin of korean mathematical society 46, 691-700 (2009) · Zbl 1188.34076 · doi:10.4134/BKMS.2009.46.4.691
[3]Balachandran, K.; Park, J. Y.: Nonlocal Cauchy problem for abstract fractional semilinear evolution equations, Nonlinear analysis: theory methods and applications 71, 4471-4475 (2009) · Zbl 1213.34008 · doi:10.1016/j.na.2009.03.005
[4]Balachandran, K.; Samuel, F. Paul: Existence of solutions for quasilinear delay integrodifferential equations with nonlocal conditions, Electronic journal of differential equations 2009, No. 6, 1-7 (2009) · Zbl 1173.34353 · doi:emis:journals/EJDE/Volumes/2009/06/abstr.html
[5]Balachandran, K.; Kiruthika, S.: Existence of solutions of abstract fractional impulsive semilinear evolution equations, Electronic journal of qualitative theory of differential equations 4, 1-12 (2010) · Zbl 1201.34091 · doi:emis:journals/EJQTDE/2010/201004.pdf
[6]Balachandran, K.; Trujillo, J. J.: The nonlocal Cauchy problem for nonlinear fractional integrodifferential equations in Banach spaces, Nonlinear analysis: theory methods and applications 72, 4587-4593 (2010) · Zbl 1196.34007 · doi:10.1016/j.na.2010.02.035
[7]Balachandran, K.; Uchiyama, K.: Existence of solutions of quasilinear integrodifferential equations with nonlocal condition, Tokyo journal of mathematics 23, 203-210 (2000) · Zbl 0976.45011 · doi:10.3836/tjm/1255958815
[8]Belmekki, M.; Nieto, J. J.; Rodríguez-López, R.: Existence of periodic solutions for a nonlinear fractional differential equation, Boundary value problems, 1-18 (2009) · Zbl 1181.34006 · doi:10.1155/2009/324561
[9]Benchohra, M.; Slimani, B. A.: Existence and uniqueness of solutions to impulsive fractional differential equations, Electronic journal of differential equations 2009, No. 10, 1-11 (2009) · Zbl 1178.34004 · doi:emis:journals/EJDE/Volumes/2009/10/abstr.html
[10]Benchohra, M.; Seba, D.: Impulsive fractional differential equations in Banach spaces, Electronic journal of qualitative theory of differential equations special edition I 8, 1-14 (2009) · Zbl 1189.26005 · doi:emis:journals/EJQTDE/sped1/108.pdf
[11]Bonilla, B.; Rivero, M.; Rodríguez-Germá, L.; Trujillo, J. J.: Fractional differential equations as alternative models to nonlinear differential equations, Applied mathematics and computation 187, 79-88 (2007) · Zbl 1120.34323 · doi:10.1016/j.amc.2006.08.105
[12]Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem, Journal of mathematical analysis and applications 162, 494-505 (1991) · Zbl 0748.34040 · doi:10.1016/0022-247X(91)90164-U
[13]Byszewski, L.; Akca, H.: Existence of solutions of a semilinear functional – differential evolution nonlocal problem, Nonlinear analysis: theory methods and applications 34, 65-72 (1998) · Zbl 0934.34068 · doi:10.1016/S0362-546X(97)00693-7
[14]Caputo, M.: Linear model of dissipation whose Q is almost frequency independent, part II, Geophysical journal of royal astronomical society 13, 529-539 (1967)
[15]Chang, Y. K.; Nieto, J. J.: Existence of solutions for impulsive neutral integro – differential inclusions with nonlocal initial conditions via fractional operators, Numerical functional analysis and optimization 30, 227-244 (2009) · Zbl 1176.34096 · doi:10.1080/01630560902841146 · doi:http://www.informaworld.com/smpp/./content~db=all~content=a910367252
[16]Delbosco, D.; Rodino, L.: Existence and uniqueness for a nonlinear fractional differential equation, Journal of mathematical analysis and applications 204, 609-625 (1996) · Zbl 0881.34005 · doi:10.1006/jmaa.1996.0456
[17]El-Borai, M. M.: Semigroups and some nonlinear fractional differential equations, Applied mathematics and computation 149, 823-831 (2004) · Zbl 1046.34079 · doi:10.1016/S0096-3003(03)00188-7
[18]El-Sayed, A. M. A.: Fractional order diffusion wave equation, International journal of theoretical physics 35, 311-322 (1996) · Zbl 0846.35001 · doi:10.1007/BF02083817
[19]Gafiychuk, V.; Datsun, B.; Meleshko, V.: Mathematical modeling of time fractional reaction – diffusion systems, Journal of computational and applied mathematics 220, 215-225 (2008) · Zbl 1152.45008 · doi:10.1016/j.cam.2007.08.011
[20]He, J. H.: Some applications of nonlinear fractional differential equations and their approximations, Bulletin of science and technology 15, 86-90 (1999)
[21]He, J. H.: Approximate analytical solution for seepage flow with fractional derivatives in porous media, Computer methods in applied mechanics and engineering 167, 57-68 (1998) · Zbl 0942.76077 · doi:10.1016/S0045-7825(98)00108-X
[22]Hernández, E.; O’regan, D.; Balachandran, K.: On recent developments in the theory of abstract differential equations with fractional derivatives, Nonlinear analysis (2010)
[23]Hilfer, R.: Applications of fractional calculus in physics, (2000)
[24]Jumarie, G.: An approach via fractional analysis to non-linearity induced by coarse-graining in space, Nonlinear analysis: real world applications 11, 535-546 (2010) · Zbl 1195.37054 · doi:10.1016/j.nonrwa.2009.01.003
[25]Kilbas, A. A.; Srivastava, H. M.; Trujillo, J. J.: Theory and applications of fractional differential equations, (2006)
[26]Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S.: Theory of impulsive differential equations, (1989) · Zbl 0718.34011
[27]Lakshmikantham, V.; Leela, S.; Vasundhara, J.: Theory of fractional dynamic systems, (2009)
[28]Liang, J.; Liu, J.; Xiao, T. J.: Nonlocal Cauchy problems governed by compact operator families, Nonlinear analysis: theory methods and applications 57, 183-189 (2004) · Zbl 1083.34045 · doi:10.1016/j.na.2004.02.007
[29]Luchko, Y. F.; Rivero, M.; Trujillo, J. J.; Velasco, M. P.: Fractional models, non-locality, and complex systems, Computers and mathematics with applications 59, 1048-1056 (2010) · Zbl 1189.37095 · doi:10.1016/j.camwa.2009.05.018
[30]Metzler, R.; Klafter, J.: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, Journal of physics A: mathematical and general 37, R161-R208 (2004) · Zbl 1075.82018 · doi:10.1088/0305-4470/37/31/R01
[31]Metzler, R.; Schick, W.; Kilian, H-G.; Nonnenmacher, T. F.: Relaxation in filled polymers: a fractional calculus approach, Journal of chemical physics 103, 7180-7186 (1995)
[32]Miller, K. S.; Ross, B.: An introduction to the fractional calculus and fractional differential equations, (1993)
[33]N’guérékata, G. M.: A Cauchy problem for some fractional abstract differential equation with non local conditions, Nonlinear analysis: theory methods and applications 70, 1873-1876 (2009) · Zbl 1166.34320 · doi:10.1016/j.na.2008.02.087
[34]Podlubny, I.: Fractional differential equations, (1999)
[35]Renardy, M.; Hrusa, W. J.; Nohel, J. A.: Mathematical problems in viscoelasticity, (1987) · Zbl 0719.73013
[36]Ryabov, Ya.E.; Puzenko, A.: Damped oscillations in view of the fractional oscillator equation, Physics review B 66, 184201 (2002)
[37]Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives; theory and applications, (1993) · Zbl 0818.26003