zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New exact solutions to the Zakharov-Kuznetsov equation and its generalized form. (English) Zbl 1221.35328
Summary: The extended hyperbolic function method is used for analytic treatment of the (2+1)-dimensional Zakharov-Kuznetsov (ZK) equation and its generalized form. We can obtained some new explicit exact solitary wave solutions, the multiple nontrivial exact periodic travelling wave solutions, the solitons solutions and complex solutions. Some known results in the literatures can be regarded as special cases. The methods employed here can also be used to solve a large class of nonlinear evolution equations.
MSC:
35Q53KdV-like (Korteweg-de Vries) equations
35C08Soliton solutions of PDE
References:
[1]Zakharov, V. E.; Kuznetsov, E. A.: On three-dimensional solitons, Sov phys 39, 285-288 (1974)
[2]Schamel, H.: A modified KdV equation for ion acoustic waves due to resonant electrons, J plasma phys 9, No. 3, 377-387 (1973)
[3]Monrl, S.; Parkes, E. J.: The derivation of a modified Zakharov – Kuznetsov equation and the stability of its solutions, J plasma phys 62, No. 3, 305-317 (1999)
[4]Monrl, S.; Parkes, E. J.: Stability of solitary wave solutions to a modified Zakharov – Kuznetsov equation, J plasma phys 64, No. 3, 411-426 (2000)
[5]Wazwaz, A. M.: Exact solutions with solitons and periodic structures for the Zakharov – Kuznetsov (ZK) equation and its modified form, Commun nonlinear sci numer simul 10, 597-606 (2005) · Zbl 1070.35075 · doi:10.1016/j.cnsns.2004.03.001
[6]Wazwaz, A. M.: The extended tanh method for the Zakharov – Kuznetsov (ZK) equation, the modified ZK equation, and its generalized forms, Commun nonlinear sci numer simul 13, 1039-1047 (2008) · Zbl 1221.35373 · doi:10.1016/j.cnsns.2006.10.007
[7]Li, B.; Chen, Y.; Zhang, H. Q.: Exact travelling wave solutions for a generalized Zakharov – Kuznetsov equation, Appl math comput 146, 653-666 (2003) · Zbl 1037.35070 · doi:10.1016/S0096-3003(02)00610-0
[8]Wazwaz, A. M.: Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method, Chaos solitons fractals 12, No. 8, 1549-1556 (2001) · Zbl 1022.35051 · doi:10.1016/S0960-0779(00)00133-8
[9]Wazwaz, A. M.: A computational approach to soliton solutions of the Kadomtsev – petviashili equation, Appl math comput 123, No. 2, 205-217 (2001) · Zbl 1024.65098 · doi:10.1016/S0096-3003(00)00065-5
[10]Wazwaz, A. M.: A study of nonlinear dispersive equations with solitary-wave solutions having compact support, Appl math comput 56, 269-276 (2001) · Zbl 0999.65109 · doi:10.1016/S0378-4754(01)00291-9
[11]Wazwaz, A. M.: Compactons and solitary patterns structures for variants of the KdV and the KP equations, Appl math comput 139, No. 1, 37-54 (2003) · Zbl 1029.35200 · doi:10.1016/S0096-3003(02)00120-0
[12]Feng, B.; Malomed, B.; Kawahara, T.: Cylindrical solitary pulses in a two-dimensional stabilized Kuramoto – Sivashinsky system, Physica D, 127-138 (2003) · Zbl 1006.76015 · doi:10.1016/S0167-2789(02)00721-2
[13]Wazwaz, A. M.: The tanh method for generalized forms of nonlinear heat conduction and Burgers – Fisher equations, Appl math comput 169, 321-338 (2005) · Zbl 1121.65359 · doi:10.1016/j.amc.2004.09.054
[14]Wazwaz, A. M.: Nonlinear dispersive special type of the Zakharov – Kuznetsov equation ZK(n,n) with compact and noncompact structures, Appl math comput 161, 577-590 (2005) · Zbl 1061.65105 · doi:10.1016/j.amc.2003.12.050
[15]Wazwaz, A. M.: Special types of the nonlinear dispersive Zakharov – Kuznetsov equation with compactons, solitons and periodic solutions, Appl math comput 81, No. 9, 1107-1119 (2004) · Zbl 1059.35131 · doi:10.1080/00207160410001684253
[16]Shivamoggi, B. K.: The Painlevé analysis of the Zakharov – Kuznetsov equation, Phys scr 42, 641-642 (1990) · Zbl 1063.35550 · doi:10.1088/0031-8949/42/6/001
[17]Wu, H. X.; Fan, T. Y.: Nonlinear dispersive ZK(n,n) equations: new compacton solutions and solitary pattern solutions, Appl math comput 187, 1308-1314 (2007)
[18]Shang, Y. D.: The extended hyperbolic function method and exact solutions of the long – short wave resonance equations, Chaos solitons fractals 36, 762-771 (2008) · Zbl 1153.35374 · doi:10.1016/j.chaos.2006.07.007
[19]Shang, Y. D.: Bäcklund transformation, Lax pairs and explicit exact solutions for the shallow water waves equation, Appl math comput 187, 1286-1297 (2007) · Zbl 1112.76010 · doi:10.1016/j.amc.2006.09.038
[20]Fan, E. G.: Integrable systems and computer algebra, (2004)