zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Complex patterns in a predator-prey model with self and cross-diffusion. (English) Zbl 1221.35423
Summary: We present a theoretical analysis of processes of pattern formation that involves organisms distribution and their interaction of spatially distributed population with self as well as cross-diffusion in a Beddington-DeAngelis-type predator-prey model. The instability of the uniform equilibrium of the model is discussed, and the sufficient conditions for the instability with zero-flux boundary conditions are obtained. Furthermore, we present novel numerical evidence of time evolution of patterns controlled by self as well as cross-diffusion in the model, and find that the model dynamics exhibits a cross-diffusion controlled formation growth not only to stripes-spots, but also to hot/cold spots, stripes and wave pattern replication. This may enrich the pattern formation in cross-diffusive predator-prey model.
MSC:
35Q92PDEs in connection with biology and other natural sciences
92D25Population dynamics (general)
35K51Second-order parabolic systems, initial bondary value problems
References:
[1]Alonso, D.; Bartumeus, F.; Catalan, J.: Mutual interference between predators can give rise to Turing spatial patterns, Ecology 83, 28-34 (2002)
[2]Cantrell, R.; Cosner, C.: Spatial ecology via reaction – diffusion equations, (2003)
[3]Hoyle, R.: Pattern formation: an introduction to methods, (2006)
[4]Iida, M.; Mimura, M.; Ninomiya, H.: Diffusion, cross-diffusion and competitive interaction, J math biol 53, No. 4, 617-641 (2006) · Zbl 1113.92064 · doi:10.1007/s00285-006-0013-2
[5]Levin, S.: The problem of pattern and scale in ecology: the robert H. Macarthur award lecture, Ecology 73, No. 6, 1943-1967 (1992)
[6]Madzvamuse, A.; Maini, P.: Velocity-induced numerical solutions of reaction-diffusion systems on continuously growing domains, J comput phys 225, No. 1, 100-119 (2007) · Zbl 1122.65076 · doi:10.1016/j.jcp.2006.11.022
[7]Mcgehee, E.; Peacock-López, E.: Turing patterns in a modified Lotka – Volterra model, Phys lett A 342, No. 1 – 2, 90-98 (2005) · Zbl 1222.92065 · doi:10.1016/j.physleta.2005.04.098
[8]Morozov, A.; Petrovskii, S.: Excitable population dynamics, biological control failure, and spatiotemporal pattern formation in a model ecosystem, Bull math biol 71, 863-887 (2009) · Zbl 1163.92040 · doi:10.1007/s11538-008-9385-3
[9]Murray, J.: Mathematical biology, (2003)
[10]Okubo, A.; Levin, S.: Diffusion and ecological problems: modern perspectives, (2001)
[11]Wang, W.; Liu, Q.; Jin, Z.: Spatiotemporal complexity of a ratio-dependent predator-prey system, Phys rev E 75, No. 5, 051913 (2007)
[12]Dubey, B.; Kumari, N.; Upadhyay, R. K.: Spatiotemporal pattern formation in a diffusive predator-prey system: an analytical approach, J appl math comput 31, No. 1, 413-432 (2009) · Zbl 1181.35022 · doi:10.1007/s12190-008-0221-6
[13]Upadhyay, R. K.; Wang, W.; Thakur, N. K.: Spatiotemporal dynamics in a spatial plankton system, Math model nat phenom 5, No. 5, 01-121 (2010) · Zbl 1197.92049 · doi:10.1051/mmnp/20105507
[14]Huang, Y.; Diekmann, O.: Interspecific influence on mobility and Turing instability, Bull math biol 65, No. 1, 143-156 (2003)
[15]Turing, A.: The chemical basis of morphogenesis, Phil trans royal soc lond-B 237, No. 1, 37-72 (1952)
[16]Segel, L.; Jackson, J.: Dissipative structure: an explanation and an ecological example, J theor biol 37, No. 3, 545-559 (1972)
[17]Gierer, A.; Meinhardt, H.: A theory of biological pattern formation, Biol cybern 12, No. 1, 30-39 (1972)
[18]Levin, S.; Segel, L.: Hypothesis for origin of planktonic patchiness, Nature 259, No. 5545, 659 (1976)
[19]Wang W, Zhang L, Xue Y, Jin Z. Spatiotemporal pattern formation of Beddington – DeAngelis-type predator-prey model, arXiv:0801.0797.
[20]Biktashev, V.; Brindley, J.; Holden, A.; Tsyganov, M.: Pursuit-evasion predator – prey waves in two spatial dimensions, Chaos 14, 988 (2004) · Zbl 1080.35036 · doi:10.1063/1.1793751
[21]Shukla, J.; Verma, S.: Effects of convective and dispersive interactions on the stability of two species, Bull math biol 43, No. 5, 593-610 (1981) · Zbl 0473.92016
[22]Kerner, E.: Further considerations on the statistical mechanics of biological associations, Bull math biol 21, No. 2, 217-255 (1959)
[23]Shigesada, N.; Kawasaki, K.; Teramoto, E.: Spatial segregation of interacting species, J theor biol 79, No. 1, 83 (1979)
[24]Chattopadhyay, J.; Tapaswi, P.: Effect of cross-diffusion on pattern formation – a nonlinear analysis, Acta appl math 48, No. 1, 1-12 (1997) · Zbl 0904.92011 · doi:10.1023/A:1005764514684
[25]Chen, L.; Jüngel, A.: Analysis of a parabolic cross-diffusion population model without self-diffusion, J differential equations 224, No. 1, 39-59 (2006) · Zbl 1096.35060 · doi:10.1016/j.jde.2005.08.002
[26]Dubey, B.; Das, B.; Hussain, J.: A predator – prey interaction model with self and cross-diffusion, Ecol model 141, No. 1 – 3, 67-76 (2001)
[27]Ko, W.; Ryu, K.: On a predator – prey system with cross diffusion representing the tendency of predators in the presence of prey species, J math anal appl 341, No. 2, 1133-1142 (2008) · Zbl 1160.35021 · doi:10.1016/j.jmaa.2007.11.018
[28]Ko, W.; Ryu, K.: On a predator – prey system with cross-diffusion representing the tendency of prey to keep away from its predators, Appl math lett 21, No. 11, 1177-1183 (2008) · Zbl 1170.35549 · doi:10.1016/j.aml.2007.12.018
[29]Kuto, K.; Yamada, Y.: Multiple coexistence states for a prey – predator system with cross-diffusion, J differential equations 197, No. 2, 315-348 (2004) · Zbl 1205.35116 · doi:10.1016/j.jde.2003.08.003
[30]Pang, P.; Wang, M.: Strategy and stationary pattern in a three-species predator – prey model, J differential equations 200, No. 2, 245-273 (2004) · Zbl 1106.35016 · doi:10.1016/j.jde.2004.01.004
[31]Pao, C.: Strongly coupled elliptic systems and applications to Lotka – Volterra models with cross-diffusion, Nonlinear anal 60, No. 7, 1197-1217 (2005) · Zbl 1074.35034 · doi:10.1016/j.na.2004.10.008
[32]Raychaudhuri, S.; Sinha, D.; Chattopadhyay, J.: Effect of time-varying cross-diffusivity in a two-species Lotka – Volterra competitive system, Ecol model 92, No. 1, 55-64 (1996)
[33]Sun, G.; Jin, Z.; Liu, Q.; Li, L.: Pattern formation induced by cross-diffusion in a predator – prey system, Chin phys B 17, No. 11, 3936-3941 (2008)
[34]Vanag, V.; Epstein, I.: Cross-diffusion and pattern formation in reaction-diffusion systems, Phys chem chem phys 11, No. 6, 897-912 (2009)
[35]Murray, J.: Discussion: Turing’s theory of morphogenesis — its influence on modelling biological pattern and form, Bull math biol 52, No. 1, 117-152 (1990)
[36]Malchow, H.; Petrovskii, S.; Venturino, E.: Spatiotemporal patterns in ecology and epidemiology – theory, models, and simulation. Mathematical and computational biology series, (2008)
[37]Munteanu, A.; Solé, R.: Pattern formation in noisy self-replicating spots, Int J bifurcat chaos 16, No. 12, 3679-3685 (2006) · Zbl 1113.92007 · doi:10.1142/S0218127406017063
[38]Baurmann, M.; Gross, T.; Feudel, U.: Instabilities in spatially extended predator – prey systems: spatio-temporal patterns in the neighborhood of Turing – Hopf bifurcations, J theor biol 245, No. 2, 220-229 (2007)
[39]Von Hardenberg, J.; Meron, E.; Shachak, M.; Zarmi, Y.: Diversity of vegetation patterns and desertification, Phys rev lett 87, 198101 (2001)
[40]Maini, P.; Painter, K.; Chau, H.: Spatial pattern formation in chemical and biological systems, J chem soc, Faraday trans 93, No. 20, 3601-3610 (1997)
[41]Abrams, P.; Ginzburg, L.: The nature of predation: prey dependent, ratio dependent or neither?, Tree 15, No. 8, 337-341 (2000)