zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Delay-dependent exponential stability for impulsive Cohen-Grossberg neural networks with time-varying delays and reaction-diffusion terms. (English) Zbl 1221.35440
Summary: A class of impulsive Cohen-Grossberg neural networks with time-varying delays and reaction-diffusion is formulated and investigated. By employing delay differential inequality and the linear matrix inequality (LMI) optimization approach, some sufficient conditions ensuring global exponential stability of equilibrium point for impulsive Cohen-Grossberg neural networks with time-varying delays and diffusion are obtained. In particular, the estimate of the exponential convergence rate is also provided, which depends on system parameters, diffusion effect and impulsive disturbed intention. It is believed that these results are significant and useful for the design and applications of Cohen-Grossberg neural networks. An example is given to show the effectiveness of the results obtained here.
MSC:
35R12Impulsive partial differential equations
35B35Stability of solutions of PDE
92B20General theory of neural networks (mathematical biology)
References:
[1]Cohen, M.; Grossberg, S.: Absolute stability and global pattern formation and parallel memory storage by competitive neural networks, IEEE trans syst man cybern 13, 815-826 (1983) · Zbl 0553.92009
[2]Cao, J.; Liang, J.: Boundedness and stability for Cohen – Grossberg neural network with time-varying delays, J math anal appl 296, 665-685 (2004) · Zbl 1044.92001 · doi:10.1016/j.jmaa.2004.04.039
[3]Yuan, K.; Cao, J.: An analysis of global asymptotic stability of delayed Cohen – Grossberg neural networks via non-smooth analysis, IEEE trans circuits syst I 52, No. 9, 1854-1861 (2005)
[4]Arik, S.; Orman, Z.: Global stability analysis of Cohen – Grossberg neural networks with time varying delays, Phys lett A 341, 410-421 (2005) · Zbl 1171.37337 · doi:10.1016/j.physleta.2005.04.095
[5]Zhang, J.; Suda, Y.; Komine, H.: Global exponential stability of Cohen – Grossberg neural networks with variable delays, Phys lett A 338, 44-55 (2005) · Zbl 1136.34347 · doi:10.1016/j.physleta.2005.02.005
[6]Liao, X.; Li, C.: Global attractivity of Cohen – Grossberg model with finite and infinite delays, J math anal appl 315, 244-262 (2006) · Zbl 1098.34062 · doi:10.1016/j.jmaa.2005.04.076
[7]Jiang, M.; Shen, Y.; Liao, X.: Boundedness and global exponential stability for generalized Cohen – Grossberg neural networks with variable delay, Appl math comp 172, 379-393 (2006) · Zbl 1090.92004 · doi:10.1016/j.amc.2005.02.009
[8]Song, Q.; Cao, J.: Stability analysis of Cohen – Grossberg neural network with both time-varying and continuously distributed delays, J comp appl math 197, 188-203 (2006) · Zbl 1108.34060 · doi:10.1016/j.cam.2005.10.029
[9]Yang, Z.; Xu, D.: Impulsive effects on stability of Cohen – Grossberg neural networks with variable delays, Appl math comput 177, 63-78 (2006) · Zbl 1103.34067 · doi:10.1016/j.amc.2005.10.032
[10]Li, K.: Stability analysis for impulsive Cohen – Grossberg neural networks with time-varying delays and distributed delays, Nonlinear anal real world appl 10, 2784-2798 (2009) · Zbl 1162.92002 · doi:10.1016/j.nonrwa.2008.08.005
[11]Chua, L. O.: Passivity and complexity, IEEE trans circ syst I fundam theory appl 46, 71-82 (1999) · Zbl 0948.92002 · doi:10.1109/81.739186
[12]Itoh, M.; Chua, L. O.: Complexity of reaction – diffusion CNN, Int J bifurc chaos 16, 2499-2527 (2006) · Zbl 1185.37191 · doi:10.1142/S0218127406016227
[13]Wang, L.; Xu, D.: Global exponential stability of Hopfield reaction – diffusion neural networks with variable delays, Sci China ser F 46, 466-474 (2003) · Zbl 1186.82062 · doi:10.1360/02yf0146
[14]Li, K.; Song, Q.: Exponential stability of impulsive Cohen – Grossberg neural networks with time-varying delays and reaction – diffusion terms, Neurocomputing 72, 231-240 (2008)
[15]Li, Z.; Li, K.: Stability analysis of impulsive Cohen – Grossberg neural networks with distributed delays and reaction – diffusion terms, Appl math model 33, 1337-1348 (2009) · Zbl 1168.35382 · doi:10.1016/j.apm.2008.01.016
[16]Li, K.: Global exponential stability of impulsive fuzzy cellular neural networks with delays and diffusion, Int J bifurc chaos 19, 245-261 (2009) · Zbl 1170.35326 · doi:10.1142/S0218127409022853
[17]Qiu, J.: Exponential stability of impulsive neural networks with time-varying delays and reaction – diffusion terms, Neurocomputing 70, 1102-1108 (2007)
[18]Qiu, J.; Cao, J.: Delay-dependent exponential stability for a class of neural networks with time delays and reaction – diffusion terms, J franklin inst 346, 301-314 (2009) · Zbl 1166.93368 · doi:10.1016/j.jfranklin.2008.11.002
[19]Liang, J.; Cao, J.: Global exponential stability of reaction – diffusion recurrent neural networks with time-varying delays, Phys lett A 314, 434-442 (2003) · Zbl 1052.82023 · doi:10.1016/S0375-9601(03)00945-9
[20]Chen, A.; Huang, L.; Cao, J.: Exponential stability of delayed bidirectional associative memory neural networks with reaction diffusion terms, Int J syst sci 38, 421-432 (2007) · Zbl 1130.35348 · doi:10.1080/00207720701276531
[21]Lou, X.; Cui, B.: New criteria on global exponential stability of BAM neural networks with distributed delays and reaction – diffusion terms, Int J neural syst 17, 43-52 (2007)
[22]Lou, X.; Cui, B.: Asymptotic synchronization of a class of neural networks with reaction – diffusion terms and time-varying delays, Comput math appl 52, 897-904 (2006) · Zbl 1126.35083 · doi:10.1016/j.camwa.2006.05.013
[23]Cui, B.; Lou, X.: Global asymptotic stability of BAM neural networks with distributed delays and reaction – diffusion terms, Chaos solitons fractals 27, 1347-1354 (2006) · Zbl 1084.68095 · doi:10.1016/j.chaos.2005.04.112
[24]Zhao, H.; Wang, G.: Existence of periodic oscillatory solution of reaction – diffusion neural networks with delays, Phys lett A 343, 372-383 (2005) · Zbl 1194.35221 · doi:10.1016/j.physleta.2005.05.098
[25]Song, Q.; Cao, J.: Dynamics of bidirectional associative memory networks with distributed delays and reaction – diffusion terms, Nonlinear anal real world appl 8, 345-361 (2007) · Zbl 1114.35103 · doi:10.1016/j.nonrwa.2005.08.006
[26]Lu, J. G.: Global exponential stability and periodicity of reaction – diffusion delayed recurrent neural networks with Dirichlet boundary conditions, Chaos solitons fractals 35, 116-125 (2008) · Zbl 1134.35066 · doi:10.1016/j.chaos.2007.05.002
[27]Wang, J.; Lu, J. G.: Global exponential stability of fuzzy cellular neural networks with delays and reaction – diffusion terms, Chaos solitons fractals 38, 878-885 (2008) · Zbl 1146.35315 · doi:10.1016/j.chaos.2007.01.032
[28]Lu, J. G.; Lu, L. J.: Global exponential stability and periodicity of reaction – diffusion recurrent neural networks with distributed delays and Dirichlet boundary conditions, Chaos solitons fractals 39, 1538-1549 (2009) · Zbl 1197.35144 · doi:10.1016/j.chaos.2007.06.040
[29]Xu, S.; Chen, T.; Lam, J.: Robust H filtering for uncertain Markovian jumps systems with mode-dependent time delays, IEEE trans autom control 48, 900-907 (2003)
[30]Yue, D.; Xu, S. F.; Liu, Y. Q.: Differential inequality with delay and impulse and its applications to design robust control, Control theory appl 16, No. 4, 519-524 (1999) · Zbl 0995.93063
[31]Cao, J.; Wang, J.: Global asymptotic stability of a general class of recurrent neural networks with time delays, IEEE trans circuit syst I 50, No. 1, 34-44 (2003)
[32]Pan, J.; Liu, X.; Zhong, S.: Stability criteria for impulsive reaction – diffusion Cohen – Grossberg neural networks with time-varying delays, Math comput model 51, 1037-1050 (2010) · Zbl 1198.35033 · doi:10.1016/j.mcm.2009.12.004