zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Stability and Hopf bifurcation for a regulated logistic growth model with discrete and distributed delays. (English) Zbl 1221.37183
Summary: We investigate the stability and Hopf bifurcation of a new regulated logistic growth with discrete and distributed delays. By choosing the discrete delay τ as a bifurcation parameter, we prove that the system is locally asymptotically stable in a range of the delay and Hopf bifurcation occurs as τ crosses a critical value. Furthermore, explicit algorithm for determining the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions is derived by normal form theorem and center manifold argument. Finally, an illustrative example is also given to support the theoretical results.
MSC:
37N25Dynamical systems in biology
92D25Population dynamics (general)
34K18Bifurcation theory of functional differential equations
34K20Stability theory of functional-differential equations
References:
[1]Cui, J. G.; Chen, L. S.: The effect of diffusion on the time varying logistic population growth, Comput math appl 36, 1-9 (1998) · Zbl 0934.92025 · doi:10.1016/S0898-1221(98)00124-2
[2]Gopalsamy, K.: Stability and oscillations in delay differential equations of population dynamics, (1992) · Zbl 0752.34039
[3]Gopalsamy, K.; Wang, P. X.: Feedback regulation of logistic growth, Int J math sci 16, 177-192 (1993) · Zbl 0765.34058 · doi:10.1155/S0161171293000213
[4]Gopalsamy, K.; Weng, P.: Global attractivity in a competition system with feedback controls, Comput math appl 45, 665-676 (2003) · Zbl 1059.93111 · doi:10.1016/S0898-1221(03)00026-9
[5]Gan QT, Xu R, Yang PH. Bifurcation and chaos in a ratio-dependent predator – prey system with time delay. Chaos Solitons Fract. doi:10.1016/j.chaos.2007.06.122.
[6]Hassard, B. D.; Kazarinoff, N. D.; Wan, Y. H.: Theory and applications of Hopf bifurcation, (1981)
[7]Jiang, M. H.; Shen, Y.; Jian, J. G.; Liao, X. X.: Stability, bifurcation and a new chaos in the logistic differential equation with delay, Phys lett A 350, 221-227 (2006) · Zbl 1195.34117 · doi:10.1016/j.physleta.2005.10.019
[8]Kuang, Y.: Delay differential equations with applications in population dynamics, (1993) · Zbl 0777.34002
[9]Lisena, B.: Periodic solutions of logistic equations with time delay, Appl math lett 20, 1070-1074 (2007) · Zbl 1176.34082 · doi:10.1016/j.aml.2006.11.008
[10]Li, H. X.: Almost periodic solutions for logistic equations with infinite delay, Appl math lett 21, 113-118 (2008) · Zbl 1141.34346 · doi:10.1016/j.aml.2007.02.013
[11]Ma Z, Huo H, Liu C. Stability and Hopf bifurcation analysis on a predator – prey model with discrete and distributed delays. Nonlinear Anal Real World Appl 2009;10:1160 – 72. · Zbl 1167.34382 · doi:10.1016/j.nonrwa.2007.12.006
[12]Ma, W. B.; Takeuchi, Y.: Stability analysis on a predator – prey system with distributed delays, J comput appl math 88, 79-94 (1998) · Zbl 0897.34062 · doi:10.1016/S0377-0427(97)00203-3
[13]Qiu, J. L.; Cao, J. D.: Exponential stability of a competitive Lotka – Volterra system with delays, Appl math comput 201, 819-829 (2008) · Zbl 1143.92040 · doi:10.1016/j.amc.2007.11.046
[14]Sancho, P.: Error growth in the time-dependent logistic equation, Chaos solitons fract 35, 133-139 (2008)
[15]Song, L. Y.; He, Y. N.; Ge, Z. H.: Stability and bifurcation for a kind of nonlinear delayed differential equations, Appl math comput 190, 677-685 (2007) · Zbl 1168.34352 · doi:10.1016/j.amc.2007.01.066
[16]Sun, C. J.; Han, M. A.; Lin, Y. P.: Analysis of stability and Hopf bifurcation for a delayed logistic equation, Chaos solitons fract 31, 672-682 (2007)
[17]Sotomayor, J.; Mello, L. F.; Santos, D. B.; Braga, D. C.: Bifurcation analysis of a model for biological control, Math comput model 48, 75-387 (2008) · Zbl 1145.37344 · doi:10.1016/j.mcm.2007.09.013
[18]Song, Y. L.; Peng, Y. H.: Stability and bifurcation analysis on a logistic model with discrete and distributed delays, Appl math comput 181, 1745-1757 (2006) · Zbl 1161.34056 · doi:10.1016/j.amc.2006.03.025
[19]Song, Y. L.; Wei, J. J.: Local Hopf bifurcation and global periodic solutions in a delayed predator – prey system, J math anal appl 301, 1-21 (2005) · Zbl 1067.34076 · doi:10.1016/j.jmaa.2004.06.056
[20]Song, Y. L.; Yuan, S. L.: Bifurcation analysis for a regulated logistic growth model, Appl math model 31, 1729-1738 (2007) · Zbl 1167.34377 · doi:10.1016/j.apm.2006.06.006
[21]Yan, X. P.: Stability and Hopf bifurcation for a delayed prey – predator system with diffusion effects, Appl math comput 192, 552-566 (2007) · Zbl 1193.35098 · doi:10.1016/j.amc.2007.03.033
[22]Yang, X. T.; Yuan, R.: Global attractivity and positive almost periodic solution for delay logistic differential equation, Nonlinear anal 68, 54-72 (2008) · Zbl 1136.34057 · doi:10.1016/j.na.2006.10.031
[23]Yan, X. P.; Zhang, C. H.: Hopf bifurcation in a delayed lokta – Volterra predator – prey system, Nonlinear anal real world appl 9, 114-127 (2008) · Zbl 1149.34048 · doi:10.1016/j.nonrwa.2006.09.007
[24]Zhang JZ, Jin Z, Yan JR, Sun GQ. Stability and Hopf bifurcation in a delayed competition system. Nonlinear Anal 2009;70:658 – 70. · Zbl 1166.34049 · doi:10.1016/j.na.2008.01.002
[25]Zhen, J.; Ma, Z. E.: Stability for a competitive Lotka – Volterra system with delays, Nonlinear anal 51, 1131-1142 (2002) · Zbl 1015.34060 · doi:10.1016/S0362-546X(01)00881-1