zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Modified projective synchronization of chaotic systems with disturbances via active sliding mode control. (English) Zbl 1221.37211
Summary: We apply the active sliding mode control technique to realize the modified projective synchronization of chaotic systems. The disturbances are considered both in the drive system and the response system. The sufficient conditions for the modified projective synchronization both the non-identical and identical chaotic systems are presented. The corresponding numerical simulations are provided to illuminate the effectiveness of the proposed active sliding mode controllers.
MSC:
37N35Dynamical systems in control
93B12Variable structure systems
34D06Synchronization
34H10Chaos control (ODE)
References:
[1]Pecora, L. M.; Carroll, T. L.: Synchronization in chaotic systems, Phys rev lett 64, No. 8, 821-824 (1990)
[2]Nana, B.; Woafo, P.; Domngang, S.: Chaotic synchronization with experimental application to secure communications, Commun nonlinear sci numer simul 14, 2266-2276 (2009)
[3]Carlos, A.; Doris, C.; Pedro, P.; Eduardo, S.: Synchronization effects using a piecewise linear map-based spiking-bursting neuron model, Neurocomputing 6, 1116-1119 (2006)
[4]Liu, J. M.; Chen, H. F.; Tang, S.: Synchronization of chaos in semiconductor lasers, Nonlinear anal 47, 5741-5751 (2001) · Zbl 1042.78511 · doi:10.1016/S0362-546X(01)00715-5
[5]Ott, E.; Grebogi, C.; Yorke, J. A.: Controlling chaos, Phys rev lett 64, 1196-1199 (1990) · Zbl 0964.37501 · doi:10.1103/PhysRevLett.64.1196
[6]Li, T.; Yu, J. J.; Wang, Z.: Dynamical analysis, delay-range-dependent synchronization criterion for Lur’e systems with delay feedback control, Commun nonlinear sci numer simul 14, 1796-1803 (2009) · Zbl 1221.93224 · doi:10.1016/j.cnsns.2008.06.018
[7]Chen HH, Sheu GJ, Lin YL, Chen CS. Chaos synchronization between two different chaotic systems via nonlinear feedback control. Nonlinear Anal. doi:10.1016/j.na.2008.10.069.
[8]Lei, Y. M.; Xu, W.; Zheng, H. C.: Synchronization of two chaotic nonlinear gyros using active control, Phys lett A 343, 153-158 (2005) · Zbl 1194.34090 · doi:10.1016/j.physleta.2005.06.020
[9]Yassen, M. T.: Controlling, synchronization and tracking chaotic Liu system using active backstepping design, Phys lett A 360, 582-587 (2007)
[10]Hassan, S.; Aria, A.: Adaptive synchronization of two chaotic systems with stochastic unknown parameters, Commun nonlinear sci numer simul 14, 508-519 (2009) · Zbl 1221.93246 · doi:10.1016/j.cnsns.2007.09.002
[11]Yan, J. J.; Yang, Y. S.; Chiang, T. Y.; Chen, C. Y.: Robust synchronization of unified chaotic systems via sliding mode control, Chaos solit fract 34, 947-954 (2007) · Zbl 1129.93489 · doi:10.1016/j.chaos.2006.04.003
[12]Li, G. H.: Modified projective synchronization of chaotic system, Chaos solit fract 32, 1786-1790 (2007) · Zbl 1134.37331 · doi:10.1016/j.chaos.2005.12.009
[13]Tang, Y.; Fang, J. A.: General methods for modified projective synchronization of hyperchaotic systems with known or unknown parameters, Phys lett A 372, 1816-1826 (2008) · Zbl 1220.37027 · doi:10.1016/j.physleta.2007.10.043
[14]Park, J. H.: Adaptive control for modified projective synchronization of a four-dimensional chaotic system with uncertain parameters, J comput appl math 213, 288-293 (2008) · Zbl 1137.93035 · doi:10.1016/j.cam.2006.12.003
[15]Zhang, Q.; Chen, S. H.; Hu, Y. M.; Wang, C. P.: Synchronizing the noise-perturbed unified chaotic system by sliding mode control, Phys A: stat theor phys 371, 317-324 (2006)
[16]Li WL, Chang KM. Robust synchronization of drive – response chaotic systems via adaptive sliding mode control. Chaos Solit Fract. doi:10.1016/j.chaos.2007.06.067.
[17]Mohammad, H.; Emadzadeh, A. A.: Synchronizing different chaotic systems using active sliding mode control, Chaos solit fract 31, 119-129 (2007) · Zbl 1142.93394 · doi:10.1016/j.chaos.2005.09.037
[18]Zhang, H.; Ma, X. K.; Liu, W. Z.: Synchronization of chaotic systems with parametric uncertainty using active sliding mode control, Chaos solit fract 21, 1249-1257 (2004) · Zbl 1061.93514 · doi:10.1016/j.chaos.2003.12.073
[19]Mohammad, H.; Mohammad, S. T.; Naseh, M. R.: Synchronization of uncertain chaotic systems using active sliding mode control, Chaos solit fract 33, 1230-1239 (2007) · Zbl 1138.93045 · doi:10.1016/j.chaos.2006.01.076