zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Lag synchronization of chaotic systems with parameter mismatches. (English) Zbl 1221.37226
Summary: The paper studies the effect of parameter mismatch on lag synchronization of chaotic systems. It shall be shown that lag synchronization of coupled systems may weakly achieve, when parameter mismatch is small. The error bound of lag synchronization arising from the parameter mismatch is also estimated by rigorously theoretical analysis. Numerical simulations on Chua oscillator are presented to verify the theoretical results.
37N35Dynamical systems in control
34K20Stability theory of functional-differential equations
37D45Strange attractors, chaotic dynamics
[1]Pecora, L. M.; Caroll, T. L.: Phys rev lett, Phys rev lett 64, 821 (1990)
[2]Caroll, T. L.; Pecora, L. M.: IEEE trans circuits syst, IEEE trans circuits syst 38, 453 (1991)
[3]Rulkov, N. F.; Sushchik, M. M.: Phys rev E, Phys rev E 51, 980 (1995)
[4]Li, C. D.; Liao, X. F.; Wong, K. W.: Physica D, Physica D 194, 187 (2004)
[5]Rosenblum, M. G.; Pikovsky, A. S.: Phys rev lett, Phys rev lett 76, 1804 (1996)
[6]Jia, Q.: Phys lett A, Phys lett A 370, 40 (2007)
[7]Voss, H. U.: Phys rev E, Phys rev E 61, 5115 (2000)
[8]Shahverdiev, E. M.; Nuriev, R. A.; Hashimov, R. H.: Chaos, solitons fractals, Chaos, solitons fractals 25, 325 (2005)
[9]Shahverdiev, E. M.; Nuriev, R. A.; Hashimova, L. H.: Chaos, solitons fractals, Chaos, solitons fractals 36, 211 (2008)
[10]Huang, T. W.; Li, C. D.: Chaos, Chaos 17, 033121 (2007)
[11]Li, C. D.; Chen, G. R.: Chaos, Chaos 16, 023102 (2006)
[12]Sanchez, E. N.; Perez, J. P.: IEEE trans circuits syst, IEEE trans circuits syst 46, 1395 (1999)