zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
On the nonautonomous difference equation x n+1 =A n +x n-1 p x n q . (English) Zbl 1221.39013
The boundedness of a non-autonomous equation is studied. The authors show that every positive solution to the considered equation is bounded.
MSC:
39A20Generalized difference equations
39A22Growth, boundedness, comparison of solutions (difference equations)
References:
[1]Amleh, A. M.; Grove, E. A.; Ladas, G.; Georgiou, D. A.: On the recursive sequence xn+1=a+xn-1xn, J. math. Anal. appl. 233, No. 2, 790-798 (1999) · Zbl 0962.39004 · doi:10.1006/jmaa.1999.6346
[2]Berehaut, K. S.; Foley, J. D.; Stevic, S.: The global attractivity of the rational difference equation yn=1+yn-kyn-m, Proc. am. Math. soc. 135, No. 4, 1133-1140 (2007) · Zbl 1109.39004 · doi:10.1090/S0002-9939-06-08580-7
[3]Berenhaut, K. S.; Foley, J. D.; Stević, S.: The global attractivity of the rational difference equation yn=A+yn-kyn-mp, Proc. am. Math. soc. 136, No. 1, 103-110 (2008) · Zbl 1134.39002 · doi:10.1090/S0002-9939-07-08860-0
[4]Berehaut, K. S.; Stevic, S.: A note on positive nonoscillatory solutions of the difference equation xn+1=+xn-kpxnp, J. difference equ. Appl. 12, No. 5, 495-499 (2006) · Zbl 1095.39004 · doi:10.1080/10236190500539543
[5]Berehaut, K. S.; Stevic, S.: The behaviour of the positive solutions of the difference equation xn+1=A+xn-2pxn-1p, J. difference equ. Appl. 12, No. 9, 909-918 (2006) · Zbl 1111.39003 · doi:10.1080/10236190600836377
[6]Berg, L.: On the asymptotics of nonlinear difference equations, Z. anal. Anwendungen 21, No. 4, 1061-1074 (2002) · Zbl 1030.39006
[7]Clapperton, J. A.; Larcombe, P. J.; Fennessey, E. J.: Some new identities for Catalan polynomials, Util. math. 80, 3-10 (2009) · Zbl 1200.11015
[8]Clapperton, J. A.; Larcombe, P. J.; Fennessey, E. J.: On iterated generating functions for integer sequences, and Catalan polynomials, Util. math. 77, 3-33 (2008) · Zbl 1161.05003
[9]Devault, R.; Kent, C.; Kosmala, W.: On the recursive sequence xn+1=p+xn-kxn. Special session of the American mathematical society meeting, part II (San Diego, CA, 2002), J. difference equ. Appl. 9, No. 8, 721-730 (2003)
[10]Devault, R.; Kocic, V.; Stutson, D.: Global behavior of solutions of the nonlinear difference equation xn+1=pn+xn-1xn, J. difference equ. Appl. 11, No. 8, 707-719 (2005) · Zbl 1079.39005 · doi:10.1080/10236190500137405
[11]El-Owaidy, H. M.; Ahmed, A. M.; Mousa, M. S.: On asymptotic behaviour of the difference equation xn+1=a+xn-1pxnp, J. appl. Math. comput. 12, No. 1 – 2, 31-37 (2003) · Zbl 1052.39005 · doi:10.1007/BF02936179
[12]Grove, E. A.; Ladas, G.: Periodicities in nonlinear difference equations, (2005)
[13]Gutnik, L.; Stevic, S.: On the behaviour of the solutions of a second-order difference equation, Discrete dyn. Nat. soc. (2007) · Zbl 1180.39002 · doi:10.1155/2007/27562
[14]Iricanin, B.; Stević, S.: On a class of third-order nonlinear difference equations, Appl. math. Comput. 213, No. 2, 479-483 (2009) · Zbl 1178.39011 · doi:10.1016/j.amc.2009.03.039
[15]Kocic, V. L.; Ladas, G.: Global behavior of nonlinear difference equations of higher order with applications, (1993)
[16]Kulenovic, M. R. S.; Ladas, G.; Overdeep, C. B.: On the dynamics of xn+1=pn+xn-1xn with a period-two coefficient, J. difference equ. Appl. 10, No. 10, 905-914 (2004) · Zbl 1061.39006 · doi:10.1080/10236190410001731434
[17]Kulenovic, M. R. S.; Ladas, G.: Dynamics of second order rational difference equations, (2002)
[18]Papaschinopoulos, G.; Schinas, C. J.: On a (k+1)th order difference equation with a coefficient of period (k+1), J. difference equ. Appl. 11, No. 3, 215-225 (2005) · Zbl 1074.39010 · doi:10.1080/10236190500035310
[19]Papaschinopoulos, G.; Schinas, C. J.; Stefanidou, G.: On a difference equation with 3-periodic coefficient, J. difference equ. Appl. 11, No. 15, 1281-1287 (2005) · Zbl 1086.39011 · doi:10.1080/10236190500386317
[20]Papaschinopoulos, G.; Schinas, C. J.: On a nonautonomous difference equation with bounded coefficient, J. math. Anal. 326, No. 1, 155-164 (2007) · Zbl 1119.39009 · doi:10.1016/j.jmaa.2006.02.081
[21]Papaschinopoulos, G.; Schinas, C. J.; Stefanidou, G.: Boundedness, periodicity and stability of the difference equation xn+1=An+xn-1xnp, Int. J. Dyn. syst. Differ. equ. 1, No. 2, 109-116 (2007) · Zbl 1157.39307 · doi:10.1504/IJDSDE.2007.016513
[22]Schinas, C. J.; Papaschinopoulos, G.; Stefanidou, G.: On the recursive sequence xn+1=A+xn-1p/xnq, Adv. difference equ. (2009)
[23]Stević, S.: On the recursive sequence xn+1=αn+xn-1xn II, Dyn. contin. Discrete impuls. Syst. ser. A. math. Anal. 10, No. 6, 911-916 (2003) · Zbl 1051.39012
[24]Stević, S.: A note on periodic character of a difference equation, J. difference equ. Appl. 10, No. 10, 929-932 (2004) · Zbl 1057.39005 · doi:10.1080/10236190412331272616
[25]Stević, S.: On the recursive sequence xn+1=a+xn-1pxnp, J. appl. Math. comput. 18, No. 1 – 2, 229-234 (2005)
[26]Stević, S.: On monotone solutions of some classes of difference equations, Discrete dyn. Nat. soc. (2006) · Zbl 1109.39013 · doi:10.1155/DDNS/2006/53890
[27]Stević, S.: Asymptotics of some classes of higher order difference equations, Discrete dyn. Nat. soc. (2007) · Zbl 1152.39011 · doi:10.1155/2007/13737
[28]Stević, S.: On the recursive sequence xn+1=A+xnpxn-1p, Discrete dyn. Nat. soc. (2007)
[29]Stević, S.: On the recursive sequence xn=1+i=1kαixn-pij=1mβjxn-qj, Discrete dyn. Nat. soc. (2007)
[30]Stević, S.: On the recursive sequence xn+1=A+xnpxn-1r, Discrete dyn. Nat. soc. (2007)
[31]Stević, S.: On the difference equation xn+1=a+xn-1xn, Comput. math. Appl. 56, No. 5, 1159-1171 (2008) · Zbl 1155.39305 · doi:10.1016/j.camwa.2008.02.017
[32]Stević, S.: Boundedness character of a class of difference equations, Nonlinear anal. 70, No. 2, 839-848 (2009) · Zbl 1162.39011 · doi:10.1016/j.na.2008.01.014
[33]Stević, S.: Boundedness character of a fourth order nonlinear difference equation, Chaos solitons fractals 40, No. 5, 2364-2369 (2009) · Zbl 1198.39020 · doi:10.1016/j.chaos.2007.10.030
[34]Stević, S.: Boundedness character of two classes of third-order difference equations, J. difference equ. Appl. 15, No. 11 – 12, 1193-1209 (2009) · Zbl 1182.39012 · doi:10.1080/10236190903022774
[35]Stević, S.: On a class of higher-order difference equations, Chaos solitons fractals 42, No. 1, 138-145 (2009) · Zbl 1198.39021 · doi:10.1016/j.chaos.2008.11.012