zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Analytical method based on Walsh function combined with orthogonal polynomial for fractional transport equation. (English) Zbl 1221.45008
Summary: A novel method based on Walsh functions combined with Chebyshev polynomials of the first kind was applied for the resolution of fractional transport equation in three-dimensions. A specific application of the method is discussed.
45J05Integro-ordinary differential equations
26A33Fractional derivatives and integrals (real functions)
42C10Fourier series in special orthogonal functions
82D75Nuclear reactor theory; neutron transport
[1]Chandrasekhar, S.: Radiative transfer, (1960)
[2]Barros, R. C.; Larsen, E. W.: A numerical method for multigroup slab-geometry discrete ordinates problems with no spatial truncation error, Trans theory stat phys 20, 441 (1991) · Zbl 0760.65123 · doi:10.1080/00411459108203914
[3]Barros, R. C.; Larsen, E. W.: A numerical method for one-group slab geometry dıscrete ordinate problem without spatial truncation error, Nucl sci eng 104, 199 (1990)
[4]Vilhena, M. T.; Barichello, L. B.: A new analytical approach to solve the neutron transport equation, Kerntechnik 56, 334-336 (1991)
[5]Kadem A. Chebyshev spectral method for the fractional radiative transfer equation, submitted for publication.
[6]Haar, A.: Zur theorie der orthogolen funktionen systeme, Math ann 69, 331-371 (1970) · Zbl 41.0469.03 · doi:10.1007/BF01456326 · doi:http://jfm.sub.uni-goettingen.de/JFM/digit.php?an=JFM+41.0469.03
[7]Wojtaszczyk, P.: Mathematical introduction to wavelets, (1997)
[8]Paley, R. E. A.: A remarkable series of orthogonal functions (I and II), Lond math soc 34, 241264 (1932) · Zbl 0005.24901 · doi:10.1112/plms/s2-34.1.265
[9]Fine, N. J.: On the Walsh functions, Trans am math soc 65, 372-414 (1949) · Zbl 0036.03604 · doi:10.2307/1990619
[10]Chen, C. F.; Hsiao, C. H.: A Walsh series direct method for solving variational problems, J franklin inst 300, No. 4, 265-280 (1975) · Zbl 0339.49017 · doi:10.1016/0016-0032(75)90199-4
[11]Bonilla, B.; Rivero, M.; Trujillo, J. J.: On systems of linear fractional differential equations with constant coefficients, Appl math comput 187, 68-87 (2007) · Zbl 1121.34006 · doi:10.1016/j.amc.2006.08.104
[12]Canuto, M. Y.: Hussaini spectral methods in fluid mechanics, (1988)
[13]Cardona, A. V.; Vilhena, M. T.: A solution of linear transport equation using Walsh function and Laplace transform, Ann nucl energy 21, 495-505 (1994)
[14]Corrington, M. S.: Solution of differential and integral equations with Walsh functions, IEEE trans circuit theory 20, 470-476 (1973)
[15]Lewis, E. E.; Miller, W. F.: Computational methods of neutron transport, (1984)
[16]Oldham, K. B.; Spanier, J.: The fractional calculus, (1974)
[17]Miller, K. S.; Ross, B. B.: An introduction to the fractional integrals and derivatives-theory and applications, (1993)
[18]Podublny, I.: Fractional differential equations, (1999)
[19]Samko, S. G.; Kilbas, A. A.; Marichev, O. I.: Fractional integrals and derivatives – theory and applications, (1993) · Zbl 0818.26003
[20]West, B. J.; Bologna, M.; Grigolini, P.: Physics of fractal operators, (2003)
[21]Magin, R. L.: Fractional calculus in bioengineering, (2006)
[22], Applications of fractional calculus in physics (2000)
[23]Kilbas, A. A.; Srivastava, H. H.; Trujillo, J. J.: Theory and applications of fractional differential equations, (2006)
[24]Trzaska, Z.: An efficient algorithm for partial expansion of the linear matrix pencil inverse, J franklin inst 324, No. 4, 465-477 (1987) · Zbl 0634.65028 · doi:10.1016/0016-0032(87)90055-X