zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An efficient method for quadratic Riccati differential equation. (English) Zbl 1221.65193
Summary: A new form of homotopy perturbation method (NHPM) has been adopted for solving the quadratic Riccati differential equation. In this technique, the solution is considered as a Taylor series expansion converges rapidly to the exact solution of the nonlinear equation. Having found the exact solution of the Riccati equation, the capability and the simplicity of the proposed technique is clarified.
MSC:
65L99Numerical methods for ODE
34A45Theoretical approximation of solutions of ODE
References:
[1]Liao SJ. The proposed homotopy analysis technique for the solution of nonlinear problems. PhD Thesis. Shanghai Jiao Tong University; 1992.
[2]Liao, S. J.: An explicit, totally analytic approximation of Blasius viscous flow problems, Int J non-linear mech 34, 759-778 (1999)
[3]Liao, S. J.: On the homotopy analysis method for nonlinear problems, Appl math comput 147, 499-513 (2004) · Zbl 1086.35005 · doi:10.1016/S0096-3003(02)00790-7
[4]Liao, S. J.: Series solutions of unsteady boundary-layer flows over a stretching flat plate, Stud appl math 117, 2529-2539 (2006) · Zbl 1145.76352 · doi:10.1111/j.1467-9590.2006.00354.x
[5]Liao, Shijun: Notes on the homotopy analysis method: some definitions and theorems, Commun nonlinear sci numer simul 14, No. 4, 983-997 (2009) · Zbl 1221.65126 · doi:10.1016/j.cnsns.2008.04.013
[6]Liao, Shijun: Series solution of nonlinear eigenvalue problems by means of the homotopy analysis method, Nonlinear anal real world appl 10, No. 4, 2455-2470 (2009) · Zbl 1163.35450 · doi:10.1016/j.nonrwa.2008.05.003
[7]He, J. H.: Homotopy perturbation technique, Comput meth appl mech eng 178, 257-262 (1999)
[8]He, J. H.: A coupling method of homotopy technique and perturbation technique for nonlinear problems, Int J non-linear mech 35, No. 1, 37-43 (2000) · Zbl 1068.74618 · doi:10.1016/S0020-7462(98)00085-7
[9]He, J. H.: New interpretation of homotopy perturbation method, Int J mod phys B 20, 2561-2568 (2006)
[10]He, J. H.: Recent development of homotopy perturbation method, Topol meth nonlinear anal 31, 205-209 (2008) · Zbl 1159.34333
[11]He, J. H.: The homotopy perturbation method for nonlinear oscillators with discontinuities, Appl math comput 151, 287-292 (2004) · Zbl 1039.65052 · doi:10.1016/S0096-3003(03)00341-2
[12]He, J. H.: Application of homotopy perturbation method to nonlinear wave equations, Chaos soliton fract 26, 695-700 (2005) · Zbl 1072.35502 · doi:10.1016/j.chaos.2005.03.006
[13]He, J. H.: Limit cycle and bifurcation of nonlinear problems, Chaos soliton fract 26, No. 3, 827-833 (2005) · Zbl 1093.34520 · doi:10.1016/j.chaos.2005.03.007
[14]Rajabi, A.; Ganji, D. D.: Application of homotopy perturbation method in nonlinear heat conduction and convection equations, Phys lett A 360, 570-573 (2007)
[15]Ganji, D. D.; Sadighi, A.: Application of homotopy perturbation and variational iteration methods to nonlinear heat transfer and porous media equations, J comput appl math 207, 24-34 (2007) · Zbl 1120.65108 · doi:10.1016/j.cam.2006.07.030
[16]Ganji, D. D.: The application of he’s homotopy perturbation method to nonlinear equations arising in heat transfer, Phys lett A 355, 337-341 (2006)
[17]Abbasbandy, S.: A numerical solution of Blasius equation by Adomian’s decomposition method and comparison with homotopy perturbation method, Chaos soliton fract 31, 257-260 (2007)
[18]Biazar, J.; Ghazvini, H.: Exact solutions for nonlinear Schrödinger equations by he’s homotopy perturbation method, Phys lett A 366, 79-84 (2007) · Zbl 1203.65207 · doi:10.1016/j.physleta.2007.01.060
[19]Abbasbandy, S.: Numerical solutions of the integral equations: homotopy perturbation and Adomian’s decomposition method, Appl math comput 173, 493-500 (2006) · Zbl 1090.65143 · doi:10.1016/j.amc.2005.04.077
[20]He, J. H.: Homotopy perturbation method for solving boundary value problems, Phys lett A 350, 87-88 (2006) · Zbl 1195.65207 · doi:10.1016/j.physleta.2005.10.005
[21]Cveticanin, L.: Homotopy-perturbation method for pure nonlinear differential equation, Chaos soliton fract 30, 1221-1230 (2006) · Zbl 1142.65418 · doi:10.1016/j.chaos.2005.08.180
[22]Siddiqui, A. M.; Zeb, A.; Ghori, Q. K.; Benharbit, A. M.: Homotopy perturbation method for heat transfer flow of a third grade fluid between parallel plates, Chaos soliton fract 36, No. 1, 182-192 (2008) · Zbl 1152.80327 · doi:10.1016/j.chaos.2006.06.037
[23]Wang, Qi: Homotopy perturbation method for fractional KdV-Burgers equation, Chaos soliton fract 35, No. 5, 843-850 (2008) · Zbl 1132.65118 · doi:10.1016/j.chaos.2006.05.074
[24]Siddiqui, A. M.; Zeb, A.; Ghori, Q. K.: Homotopy perturbation method for thin film flow of a third grade fluid down an inclined plane, Chaos soliton fract 35, No. 1, 140-147 (2008) · Zbl 1135.76006 · doi:10.1016/j.chaos.2005.10.069
[25]Turgut, Ozis; Ahmet, Yıldırım: A note on he’s homotopy perturbation method for van der Pol oscillator with very strong nonlinearity, Chaos soliton fract 34, No. 3, 989-991 (2007)
[26]Siddiqui, A. M.; Zeb, A.; Ghori, Q. K.: Homotopy perturbation method for thin film flow of a fourth grade fluid down a vertical cylinder, Phys lett A 352, 404-410 (2006) · Zbl 1187.76622 · doi:10.1016/j.physleta.2005.12.033
[27]Yusufoglu, E.: Homotopy perturbation method for solving a nonlinear system of second order boundary value problems, Int J nonlinear sci numer simul 8, 353-358 (2007)
[28]Abbasbandy, S.: Homotopy perturbation method for quadratic Riccati differential equation and comparison with Adomian’s decomposition method, Appl math comput 172, 485-490 (2006) · Zbl 1088.65063 · doi:10.1016/j.amc.2005.02.014
[29]Abbasbandy, S.: Iterated he’s homotopy perturbation method for quadratic Riccati differential equation, Appl math comput 175, 581-589 (2006) · Zbl 1089.65072 · doi:10.1016/j.amc.2005.07.035
[30]Tan, Yue; Abbasbany, Saeid: Homotopy analysis method for quadratic Riccati differential equation, Commun nonlinear sci numer simul 13, 539-546 (2008) · Zbl 1132.34305 · doi:10.1016/j.cnsns.2006.06.006
[31]Abbasbandy, S.: A new application of he’s variational iteration method for quadratic Riccati differential equation by using Adomian’s polynomials, J comput appl math 207, No. 1, 59-163 (2007) · Zbl 1120.65083 · doi:10.1016/j.cam.2006.07.012