zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Modified homotopy analysis method for solving systems of second-order Bvps. (English) Zbl 1221.65196
Summary: A new modification of the homotopy analysis method (HAM) is presented for solving systems of second-order boundary-value problems (BVPs). The main advantage of the modified HAM (MHAM) is that one can avoid the uncontrollability problems of the nonzero endpoint conditions encountered in the standard HAM. Numerical comparisons show that the MHAM is more efficient than the standard HAM.
65L99Numerical methods for ODE
[1]Shihua, Chena; Jia, Hu; Li, Chen; Changping, Wang: Existence results for n-point boundary value problem of second order ordinary differential equations, J comput appl math 180, 425-432 (2005) · Zbl 1069.34011 · doi:10.1016/j.cam.2004.11.010
[2]Xiyou, Cheng; Chengkui, Zhong: Existence of positive solutions for a second-order ordinary differential system, J math anal appl 312, 14-23 (2005) · Zbl 1088.34016 · doi:10.1016/j.jmaa.2005.03.016
[3]Lomtatidze, A.; Malaguti, L.: On a two-point boundary value problem for the second order ordinary di with singularities, Nonlinear anal 52, 1553-1567 (2003) · Zbl 1027.34022 · doi:10.1016/S0362-546X(01)00148-1
[4]Thompson, H. B.; Tisdell, C.: Systems of difference equations associated with boundary value problems for second order systems of ordinary differential equations, J math anal appl 248, 333-347 (2000) · Zbl 0963.65081 · doi:10.1006/jmaa.2000.6823
[5]Thompson, H. B.; Tisdell, C.: Boundary value problems for systems of difference equations associated with systems of second-order ordinary differential equations, Appl math lett 15, No. 6, 761-766 (2002) · Zbl 1003.39012 · doi:10.1016/S0893-9659(02)00039-3
[6]Fazhan, Geng; Minggen, Cui: Solving a nonlinear system of second order boundary value problems, J math anal appl 327, 1167-1181 (2007) · Zbl 1113.34009 · doi:10.1016/j.jmaa.2006.05.011
[7]Lu Junfeng. Variational iteration method for solving a nonlinear system of second-order boundary value problems. Comput Math Appl. doi:10.1016/j.camwa.2006.12.060 [in press].
[8]Dehghan Mehdi, Saadatmandi Abbas. The numerical solution of a nonlinear system of second-order boundary value problems using the sinc-collocation method. Mathl Comput Model doi:10.1016/j.mcm.2007.02.002 [in press].
[9]Liao SJ. The proposed homotopy analysis techniques for the solution of nonlinear problems. Ph.D. Dissertation, Shanghai Jiao Tong University, Shanghai, 1992 [in English].
[10]Bataineh AS, M.S.M. Noorani, I. Hashim, Solving systems of ODEs by homotopy analysis method. Commun Nonlin Sci Numer Simul. doi:10.1016/j.cnsns.2007.05.026 [in press].
[11]Liao, S. J.: Beyond perturbation: introduction to the homotopy analysis method, (2003)
[12]Liao, S. J.: An approximate solution technique which does not depend upon small parameters: a special example, Int J nonlinear mech 30, 371-380 (1995) · Zbl 0837.76073 · doi:10.1016/0020-7462(94)00054-E
[13]Liao, S. J.: An approximate solution technique which does not depend upon small parameters (Part 2): an application in fluid mechanics, Int J nonlinear mech 32, 815-822 (1997) · Zbl 1031.76542 · doi:10.1016/S0020-7462(96)00101-1
[14]Liao, S. J.: An explicit totally analytic approximation of Blasius viscous flow problems, Int J nonlinear mech 34, 759-778 (1999)
[15]Liao, S. J.: On the homotopy analysis method for nonlinear problems, Appl math comput 147, 499-513 (2004) · Zbl 1086.35005 · doi:10.1016/S0096-3003(02)00790-7
[16]Liao, S. J.; Pop, I.: Explicit analytic solution for similarity boundary layer equations, Int J heat mass transfer 47, 75-78 (2004) · Zbl 1045.76008 · doi:10.1016/S0017-9310(03)00405-8
[17]Liao, S. J.: Comparison between the homotopy analysis method and homotopy perturbation method, Appl math comput 169, 1186-1194 (2005) · Zbl 1082.65534 · doi:10.1016/j.amc.2004.10.058
[18]Liao, S. J.: A new branch of solutions of boundary-layer flows over an impermeable stretched plate, Int J heat mass transfer 48, 2529-3259 (2005) · Zbl 1189.76142 · doi:10.1016/j.ijheatmasstransfer.2005.01.005
[19]Ayub, M.; Rasheed, A.; Hayat, T.: Exact flow of a third grade fluid past a porous plate using homotopy analysis method, Int J eng sci 41, 2091-2103 (2003) · Zbl 1211.76076 · doi:10.1016/S0020-7225(03)00207-6
[20]Hayat, T.; Khan, M.; Asghar, S.: Homotopy analysis of MHD flows of an Oldroyd 8-constant fluid, Acta mech 168, 213-232 (2004) · Zbl 1063.76108 · doi:10.1007/s00707-004-0085-2
[21]Hayat, T.; Khan, M.: Homotopy solutions for a generalized second-grade fluid past a porous plate, Nonlinear dyn 42, 395-405 (2005) · Zbl 1094.76005 · doi:10.1007/s11071-005-7346-z
[22]Hayat, T.; Abbas, Z.; Sajid, M.: Series solution for the upper-convected Maxwell fluid over a porous stretching plate, Phys lett A 358, 396-403 (2006) · Zbl 1142.76511 · doi:10.1016/j.physleta.2006.04.117
[23]Hayat, T.; Khan, M.; Sajid, M.; Ayub, M.: Steady flow of an Oldroyd 8-constant fluid between coaxial cylinders in a porous medium, J porous media 9, No. 8, 709-722 (2006)
[24]Sajid, M.; Hayat, T.; Asghar, S.: On the analytic solution of the steady flow of a fourth grade fluid, Phys lett A 355, 18-26 (2006)
[25]Hayat, T.; Sajid, M.: On analytic solution for thin film flow of a fourth grade fluid down a vertical cylinder, Phys lett A 361, 316-322 (2007) · Zbl 1170.76307 · doi:10.1016/j.physleta.2006.09.060
[26]Hayat, T.; Sajid, M.: Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet, Int J heat mass transfer 50, 75-84 (2007) · Zbl 1104.80006 · doi:10.1016/j.ijheatmasstransfer.2006.06.045
[27]Hayat, T.; Abbas, Z.; Sajid, M.; Asghar, S.: The influence of thermal radiation on MHD flow of a second grade fluid, Int J heat mass transfer 50, 931-941 (2007) · Zbl 1124.80325 · doi:10.1016/j.ijheatmasstransfer.2006.08.014
[28]Sajid, M.; Hayat, T.; Asghar, S.: Non-similar analytic solution for MHD flow and heat transfer in a third-order fluid over a stretching sheet, Int J heat mass transfer 50, 1723-1736 (2007) · Zbl 1140.76042 · doi:10.1016/j.ijheatmasstransfer.2006.10.011
[29]Tan, Y.; Abbasbandy, S.: Homotopy analysis method for quadratic Riccati differential equation, Commun nonlinear sci numer simul. 13, 539-546 (2008) · Zbl 1132.34305 · doi:10.1016/j.cnsns.2006.06.006
[30]Abbasbandy, S.: The application of homotopy analysis method to nonlinear equations arising in heat transfer, Phys lett A 360, 109-113 (2006)
[31]Abbasbandy, S.: The application of homotopy analysis method to solve a generalized Hirota-satsuma coupled KdV equation, Phys lett A 15, 1-6 (2006)
[32]Abbasbandy, S.: Approximate solution for the nonlinear model of diffusion and reaction in porous catalysts by means of the homotopy analysis method, Chem eng J. (2007)
[33]Bataineh, A. S.; Noorani, M. S. M.; Hashim, I.: Solutions of time-dependent Emden – Fowler type equations by homotopy analysis method, Phys lett A 371, 72-82 (2007) · Zbl 1209.65104 · doi:10.1016/j.physleta.2007.05.094
[34]Bataineh AS, Noorani MSM, Hashim I. The homotopy analysis method for Cauchy reaction – diffusion problems. Phys Lett A. doi:10.1016/j.physleta.2007.07.069 [in press].
[35]Bataineh AS, Noorani MSM, Hashim I, Series solutions to the multispecies Lotka – Volterra equations [submitted for publication].
[36]Bataineh AS, Noorani MSM, Hashim I. Approximate analytical solutions of systems of PDEs by homotopy analysis method. Comput Math Appl. [Accepted for publication]. · Zbl 1142.65423 · doi:10.1016/j.camwa.2007.11.022
[37]Bataineh AS, Noorani MSM, Hashim I. Application of homotopy analysis method for solving generalized Burgers – Huxley equation [submitted for publication].
[38]Bataineh AS, Noorani MSM, Hashim I. Solutions of Emden – Fowler equations by homotopy analysis method [submitted for publication].
[39]He, J. H.: Homotopy perturbation method: a new nonlinear analytical technique, Appl math comput 135, 73-79 (2003) · Zbl 1030.34013 · doi:10.1016/S0096-3003(01)00312-5