zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Application of 2D-bpfs to nonlinear integral equations. (English) Zbl 1221.65339
Summary: An efficient method is presented for solving nonlinear two-dimensional Volterra integral equations (VIEs). Using piecewise constant two-dimensional block-pulse functions (2D-BPFs) and their operational matrix of integration, two-dimensional first kind integral equations reduce to a lower triangular system. The rate of convergence and error analysis are given and numerical examples illustrate efficiency and accuracy of the proposed method.
65R20Integral equations (numerical methods)
[1]Mckee, S.; Tang, T.; Diogo, T.: An Euler-type method for two-dimensional Volterra integral equations of the first kind, IMA J numer anal 20, 423-440 (2000) · Zbl 0965.65143 · doi:10.1093/imanum/20.3.423
[2]Hanson, R.; Phillips, J.: Numerical solution of two-dimensional integral equations using linear elements, SIAM J numer anal 15, 113-121 (1978) · Zbl 0414.65071 · doi:10.1137/0715007
[3]Tikhonov, A. N.; Arsenin, V. Y.: Solutions of ill-posed problems, (1977)
[4]Babolian, E.; Masouri, Z.: Direct method to solve Volterra integral equation of the first kind using operational matrix with block-pulse functions, J comput appl math 220, No. 1, 2, 51-57 (2008) · Zbl 1146.65082 · doi:10.1016/j.cam.2007.07.029
[5]Bel’tyukov, B. A.; Kuznechikhina, L. N.: A rung – Kutta method for the solution of two-dimensional nonlinear Volterra integral equations, Differential equations 12, 1163-1173 (1976) · Zbl 0404.65066
[6]Singh, P.: A note on the solution of two-dimensional Volterra integral equations by spline, Indian J math 18, 61-64 (1979) · Zbl 0352.45017
[7]Brunner, H.; Kauthen, J. P.: The numerical solution of two-dimensional Volterra integral equations by collocation and iterated collocation, IMA J numer anal 9, 47-59 (1989) · Zbl 0665.65095 · doi:10.1093/imanum/9.1.47
[8]Han, G. Q.; Zhang, L. Q.: Asymptotic error expansion of two-dimensional Volterra integral equation by iterated collocation, Appl math comput 61, 269-285 (1994) · Zbl 0798.65123 · doi:10.1016/0096-3003(94)90050-7
[9]Guoqiang, H.; Hayami, K.; Sugihara, K.; Jiong, W.: Extrapolation method of iterated collocation solution for two-dimensional non-linear Volterra integral equation, Appl math comput 112, 49-61 (2000) · Zbl 1023.65140 · doi:10.1016/S0096-3003(99)00036-3
[10]Hadizadeh, M.; Moatamedi, N.: A new differential transformation approach for two-dimensional Volterra integral equations, Int J comp math 84, 515-529 (2007) · Zbl 1122.65131 · doi:10.1080/00207160701224712
[11]Xie, W. -J.; Lin, F. -R.: A fast numerical solution method for two-dimensional Fredholm integral equations of the second kind, Appl numer math (2009)
[12]Rao, G. P.: Piecewise constant orthogonal functions and their application to systems and control, (1983)
[13]Jiang, Z. H.; Schaufelberger, W.: Block pulse functions and their applications in control systems, (1992)
[14]Wang, C. H.; Shih, Y. P.: Explicit solutions of integral equations via block-pulse functions, Int J syst sci 13, 773-782 (1982) · Zbl 0497.45010 · doi:10.1080/00207728208926387
[15]Maleknejad, K.; Shahrezaee, M.; Khatami, H.: Numerical solution of integral equations system of the second kind by block-pulse functions, Appl math comput 166, 15-24 (2005) · Zbl 1073.65149 · doi:10.1016/j.amc.2004.04.118
[16]Rudin, W.: Principles of mathematical analysis, (1976) · Zbl 0346.26002