zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A composite collocation method for the nonlinear mixed Volterra-Fredholm-Hammerstein integral equations. (English) Zbl 1221.65340
Summary: This paper presents a computational technique for the solution of the nonlinear mixed Volterra-Fredholm-Hammerstein integral equations. The method is based on the composite collocation method. The properties of hybrid of block-pulse functions and Lagrange polynomials are discussed and utilized to define the composite interpolation operator. The estimates for the errors are given. The composite interpolation operator together with the Gaussian integration formula are then used to transform the nonlinear mixed Volterra-Fredholm-Hammerstein integral equations into a system of nonlinear equations. The efficiency and accuracy of the proposed method is illustrated by four numerical examples.
65R20Integral equations (numerical methods)
45G10Nonsingular nonlinear integral equations
[1]Tricomi, F. G.: Integral equations, (1982)
[2]Lardy, L. J.: A variation of nystroms method for Hammerstein integral equations, J integ equ 3, 123-129 (1982)
[3]Kumar, S.; Sloan, I. H.: A new collocation-type method for Hammerstein integral equations, J math comput 48, 123-129 (1987) · Zbl 0616.65142 · doi:10.2307/2007829
[4]Brunner, H.: Implicitly linear collocation method for nonlinear Volterra equations, J appl num math 9, 235-247 (1992) · Zbl 0761.65103 · doi:10.1016/0168-9274(92)90018-9
[5]Han, G.: Asymptotic error expansion variation of a collocation method for Volterra – Hammerstein equations, J appl num math 13, 357-369 (1993) · Zbl 0799.65150 · doi:10.1016/0168-9274(93)90094-8
[6]Li, F.; Li, Y.; Liang, Z.: Existence of solutions to nonlinear Hammerstein integral equations and applications, J math anal appl 323, 209-227 (2006) · Zbl 1104.45003 · doi:10.1016/j.jmaa.2005.10.014
[7]Yalcinbas, S.: Taylor polynomial solutions of nonlinear Volterra – Fredholm integral equations, Appl math comput 127, 195-206 (2002) · Zbl 1025.45003 · doi:10.1016/S0096-3003(00)00165-X
[8]Bildik, N.; Inc, M.: Modified decomposition method for nonlinear Volterra – Fredholm integral equations, Chaos, solitons fractals 33, 308-313 (2007) · Zbl 1152.45301 · doi:10.1016/j.chaos.2005.12.058
[9]Yousefi, S.; Razzaghi, M.: Legendre wavelets method for the nonlinear Volterra – Fredholm integral equations, Math comput simul 70, 1-8 (2005) · Zbl 1205.65342 · doi:10.1016/j.matcom.2005.02.035
[10]Ordokhani, Y.: Solution of nonlinear Volterra – Fredholm – Hammerstein integral equations via rationalized Haar functions, Appl math comput 180, 436-443 (2006) · Zbl 1102.65141 · doi:10.1016/j.amc.2005.12.034
[11]Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A.: Spectral methods: fundamentals in single domains, (2006)
[12]Maday, Y.; Quarteroni, A.: Spectral and pseudo-spectral approximations of Navier – Stokes equations, SIAM J numer anal 19, 761-780 (1982) · Zbl 0503.76035 · doi:10.1137/0719053
[13]Westhaven, J. S.; Gottlieb, S.; Gottlieb, D.: Spectral methods for time-dependent problems, (2007)
[14]Davis, P. J.; Rabinowitz, P.: Methods of numerical integration, (1984)
[15]Bellman, R. E.; Kalaba, R. E.: Quasilinearization and nonlinear boundary-value problems, (1965) · Zbl 0139.10702
[16]Madbouly, N.; Ghee, D. F. Mc; Roach, G. F.: Adomian’s method for Hammerstein integral equations arising from chemical reactor theory, Appl math comput 117, 241-249 (2001) · Zbl 1023.65143 · doi:10.1016/S0096-3003(99)00177-0
[17]Poore AB, A tubular chemical reactor model, In: Collection of nonlinear model problems contributed to the proceeding of the AMS-SIAM. 1989. p. 28 – 31.
[18]Madbouly N, Solutions of Hammerstein integral equations arising from chemical reactor theory. Ph.D. Thesis, University of Strathclyde; 1996.